On cauchy’s bound for zeros of a polynomial

In this note, we improve upon Cauchy’s classical bound, and upon some recent bounds for the moduli of the zeros of a polynomial. Be a polynomial of degree n, with complex coefficients. Then, according to Cauchy’s classical result, we have the following theorem. | Turk J Math 30 (2006) , 95 – 100. ¨ ITAK ˙ c TUB On Cauchy’s Bound for Zeros of a Polynomial V. K. Jain Abstract In this note, we improve upon Cauchy’s classical bound, and upon some recent bounds for the moduli of the zeros of a polynomial. Key Words: Zeros, polynomials, upper bound, moduli, refinement. 1. Introduction and Statement of Results Let f(z) = z n + an−1 z n−1 + an−2 z n−2 + . . . + a1 z + a0 , ai 6= 0, for at least one i ∈ I, I = {0, 1, 2, . . ., n − 1}, be a polynomial of degree n, with complex coefficients. Then, according to Cauchy’s classical result [1], we have the following theorem. Theorem A Z[f(z)] ⊂ B(η) ⊂ B(1 + a), where η is the unique positive root of the equation Q(x) = 0, Q(x) = xn − |an−1 |xn−1 − |an−2|xn−2 − . . . − |a1 |x − |a0 |, (1) AMS Mathematics Subject Classification: Primary 30C15, 30C10 95 JAIN Z[f(z)] = the set of all zeros of the polynomial f(z), ¯ B(r) = {z : |z| (1 + δ0 )n − |an−1 |(1 + δ0 )n−1 − |an−2 |(1 + δ0 )n−2 (1 + δ0 )n−3 − 1 −|an−3 |(1 + δ0 )n−3 − a , δ0 (1 + δ0 )n−3 (1 + δ0 )3 − |an−1|(1 + δ0 )2 − a , |an−2 |(1 + δ0 ) − |an−3| − δ0 = (1 + δ0 )n−3 Q0 (δ0 ), δ0 = 0, which implies η < 1 + δ0 . Again, Q0 (δ1 ) = Q0 (δ1 ) − δ1 Q1 (δ1 ) − Q1 (δ1 ) = δ1 (a − |an−3 |), (by (3) and (6)), ≥ 0, thereby implying that δ0 ≤ δ1 . And now Theorem 1 follows, by using the fact that η is unique positive root of the equation Q(x) = .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.