Đang chuẩn bị liên kết để tải về tài liệu:
Advances in PID Control Part 5

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'advances in pid control part 5', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 70 Advances in PID Control Kp2 KpịKp ãKD - Kp K 3 1 Kp KiãKD 2 K Kp Kj 1 The last two conditions imply that Kp 1 ã Kị and Kp Kị Kị which are satisfied by conditions 6 . And the first condition implies to solve the equation Kp2 Kp Ki ã ỳ KKKiệ t 1 for Kp. Similar to the way in which conditions for positive value of the entries of matrix M Kp Kd Kị it follows that KKaKK J K KD 4 K 1 1 Kp ---------------------- ------------- p 2 That is conservatively satisfied by the condition Kp KD Kị given at Theorem 1 equation 6 . On the other hand for Kp to be real it is necessary that KD 3Kị 2yj2K2 sKa 1 and for Kd to be real it is required that Kị 1 all these conditions are clearly satisfied by those stated at Theorem 1 equations 6 . Therefore if the conditions given by 6 are satisfied the Lyapunov function results on a sum of quadratic terms V e m1 2 e1 e2 2 e2 e3 2 Ẳyỷ k2e22 k3e32 9 for positive parameters k2 k2 k3 thus concluding that V e 0 for e DO and V e o for e 0. Since the definition of the matrix entries 8 allows cancellation of all cross error terms on the time derivative of the Lyapunov function 7 then along the position error solutions it follows that V e eTMe am 2 Kpe22 K2e32 KpKD Kị Kd ầ2ỳ KD2 2 e2 K 10 To ensure that v e 0 it is required that KpKD Kị Kị ă 2ặ Kịỷ 0 which implies that 2K2aKDKf Kd2 F KD which is satisfied by the condition Kp KD Kị given at Theorem 1 equations 6 . Nonetheless to guaranteed that Kp is real it follows that 2Kị ă KpKf Kpf 0 that implies when considering equal to zero that the solutions are tựíự ãS Kn-----z ---- D 2 Thus for Kd to be real it is required that Kị 8 and finally the condition on KD results on A PI2D Feedback Control Type for Second Order Systems 71 Ki JkXk 8 D 2 Such that the above conditions are satisfied by considering those of Theorem 1 equation 6 . Therefore by satisfying conditions 6 it can be guaranteed that all coefficients of the derivative of the Lyapunov function v e are positive such that V e 0 for e DO and V e 0

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.