Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Chính - Ngân Hàng
Tài chính doanh nghiệp
An Introduction to Financial Option Valuation_11
Đang chuẩn bị liên kết để tải về tài liệu:
An Introduction to Financial Option Valuation_11
Thành Sang
70
22
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Tham khảo tài liệu 'an introduction to financial option valuation_11', tài chính - ngân hàng, tài chính doanh nghiệp phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 23.5 FTCS andBTCS 241 T 000000000 000000000 000000000 000000000 000000000 t 000000000 000000000 000000000 000000000 000000000 0 L x Fig. 23.2. Finite difference grid jh ik N 0 N . Points are spaced at a distance of h apart in the x-direction and k apart in the t-direction. A simple method for the heat equation 23.2 involves approximating the time derivative d dt by the scaled forward difference in time k-1 At and the second order space derivative d1 dx2 by the scaled second order central difference in space h-2ỗ2. This gives the equation k-1AtUj - h-2s2ưj 0 which may be expanded as ưj 1 - ưj ưj 1 - 2ưi ư-1 k h2 A more revealing re-write is ưj 1 vưj 1 1 - 2v ưj vưj-1 23.7 where V k h2 is known as the mesh ratio. Suppose that all approximate solution values at time level i ưj N are known. Now note that ư 1 a i 1 k and ư 1 b i 1 k are given by the boundary conditions 23.4 . Equation 23.7 then gives a formula for computing all other approximate values at time level i 1 that is ưj 1 N -1. Since we 242 Finite difference methods Fig. 23.3. Stencil for FTCS. Solid circles indicate the location of values that must be known in order to obtain the value located at the open circle. are supplied with the time-zero values U0 g jh from 23.3 this means that the complete set of approximations Uj i jff0 N 0 can be computed by stepping forward in time. The method defined by 23.7 is known as FTCS which stands for forward difference in time central difference in space. Figure 23.3 illustrates the stencil for FTCS. Here the solid circles indicate the location of values Uj_ 1 Uj ri -ni 1 and Uj 1 that must be known in order to obtain the value Uj 1 located at the open circle. We may collect all the interior values at time level i into a vector U1 U2 ừ G RNx-1. 23.8 Ui UNx -1 Exercise 23.3 then asks you to confirm that FTCS may be written U 1 FU pi for0 i Nt - 1 23.9 with g h g 2h U0 G RNx-1 g Nx - 1 h 23.5 FTCS andBTCS 243 where the matrix F has the form 1 - 2v V 0. 0 F V 1 2v V 0 0 . .
TÀI LIỆU LIÊN QUAN
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_13
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_14
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_1
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_3
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_4
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_6
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_7
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_8
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_9
An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation_10
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.