Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Tự động hoá
Neural Networks and Neural-Fuzzy Approaches in an In-Process Surface Roughness Recognition System for End Milling Operations
Đang chuẩn bị liên kết để tải về tài liệu:
Neural Networks and Neural-Fuzzy Approaches in an In-Process Surface Roughness Recognition System for End Milling Operations
Lam Hà
166
19
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Different machining processes produce different products with varying qualities. When evaluating the quality of a finished piece, surface roughness is the most important result of the machining process to consider, because many product attributes can be determined by how well the surface finish is produced. | Chen Joseph C. Neural Networks and Neural-Fuzzy Approaches in an In-Process Surface Roughness Recognition System for End Milling Operations Computational Intelligence in Manufacturing Handbook Edited by Jun Wang et al Boca Raton CRC Press LLC 2001 16 Neural Networks and Neural-Fuzzy Approaches in an In-Process Surface Roughness Recognition System for End Milling Operations Joseph C. Chen Iowa State University 16.1 Introduction 16.2 Methodologies 16.3 Experimental Setup and Design 16.4 The In-Process Surface Roughness Recognition Systems 16.5 Testing Results and Conclusions 16.1 Introduction Different machining processes produce different products with varying qualities. When evaluating the quality of a finished piece surface roughness is the most important result of the machining process to consider because many product attributes can be determined by how well the surface finish is produced. The quality of the surface finish or surface roughness affects several functional attributes of parts such as surface friction wear reflectivity heat transmission porosity coating adherence and fatigue resistance. The desired surface roughness value is usually specified for individual parts and a particular process is selected in order to achieve the specified roughness. Typically surface roughness measurement has been carried out by manually inspecting machined surfaces at fixed intervals. A surface profilometer containing a contact stylus is used in the manual inspection procedure. This procedure is both time-consuming and labor-intensive. In addition a number of defective parts could be produced during the time needed to complete an off-line surface inspection thereby creating additional production costs. Another disadvantage of using surface profilometers is that they register the serious interference of extraneous vibration generated in the surrounding environment. This extraneous vibration might significantly influence the accuracy of surface measurements. For these .
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.