Đang chuẩn bị liên kết để tải về tài liệu:
EXISTENCE OF A POSITIVE SOLUTION FOR A p-LAPLACIAN SEMIPOSITONE PROBLEM MAYA CHHETRI AND R. SHIVAJI

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

EXISTENCE OF A POSITIVE SOLUTION FOR A p-LAPLACIAN SEMIPOSITONE PROBLEM MAYA CHHETRI AND R. SHIVAJI Received 30 September 2004 and in revised form 13 January 2005 We consider the boundary value problem −∆ p u = λ f (u) in Ω satisfying u = 0 on ∂Ω, where u = 0 on ∂Ω, λ 0 is a parameter, Ω is a bounded domain in Rn with C 2 boundary ∂Ω, and ∆ p u := div(|∇u| p−2 ∇u) for p 1. Here, f : [0,r] → R is a C 1 nondecreasing function for some r 0 satisfying f. | EXISTENCE OF A POSITIVE SOLUTION FOR A p-LAPLACIAN SEMIPOSITONE PROBLEM MAYA CHHETRI AND R. SHIVAJI Received 30 September 2004 and in revised form 13 January 2005 We consider the boundary value problem -ApU Af u in D satisfying u 0 on dD where u 0 on dD A 0 is a parameter D is a bounded domain in R with C2 boundary dD and ApU div Vu p-2 Vu for p 1. Here f 0 r R is a C1 nondecreasing function for some r 0 satisfying f 0 0 semipositone . We establish a range of A for which the above problem has a positive solution when f satisfies certain additional conditions. We employ the method of subsuper solutions to obtain the result. 1. Introduction Consider the boundary value problem -Apu Af u in D u 0 in D 1.1 u 0 on dD where A 0 is a parameter D is a bounded domain in R with C2 boundary dD and Apu div Vu p-2Vu for p 1. We assume that f e C1 0 r is a nondecreasing function for some r 0 such that f 0 0 and there exist f e 0 r such that f s s - f 0 for s e 0 r . To precisely state our theorem we first consider the eigenvalue problem -Apv Alvlp-2v in D 1.2 v 0 on dD. Let Ộ1 e C1 D be the eigenfunction corresponding to the first eigenvalue A1 of 1.2 such that Ộ1 0 in D and II01II 1. It can be shown that dộ1 dp 0 on dD and hence depending on D there exist positive constants m 8 Ơ such that V01 p - A1ộp m on Dg Ộ1 Ơ on D Dg 1.3 where Dg x e D l d x dD 8 . Copyright 2006 Hindawi Publishing Corporation Boundary Value Problems 2005 3 2005 323-327 DOI 10.1155 BVP.2005.323 324 Positive solution for p-Laplacian semipositone problems We will also consider the unique solution e e C1 Q of the boundary value problem -Ape 1 in Q e 0 on dQ 1.4 to discuss our result. It is known that e 0 in Q and de dp 0 on dQ. Now we state our theorem. Theorem 1.1. Assume that there exist positive constants l1 l2 e p r satisfying a l2 kl1 b f 0 A1 mf l1 1 and c lp-1 f l2 p lp-1 f l1 where k k Q A1 p-1 p p - 1 ơ p-1 p e ro and p p Q p e TO p - 1 p-1 A1 ơp . Then there exist A A such that 1.1 has a positive .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.