Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Tài Chính - Ngân Hàng
Quỹ đầu tư
Resource Constraints and Linear Programming
Đang chuẩn bị liên kết để tải về tài liệu:
Resource Constraints and Linear Programming
Mạnh Tường
133
15
ppt
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
The process of finding an optimum outcome from a set of constrained resources, where the objective function and the constraints can be expressed as linear equations. The process of finding an optimum outcome from a set of constrained resources, where the objective function and the constraints can be expressed as linear equations. | Ch 11 Resource Constraints and Linear Programming The process of finding an optimum outcome from a set of constrained resources, where the objective function and the constraints can be expressed as linear equations. Drawing the Linear Model Adding the Linear Constraints Feasible Region Adding the Iso-Contribution Line The iso-contribution line is a ‘slope’ which represents the objective function. It is drawn as a generic line, then ‘floated’ to an optimum location within the feasible region. Finding the Optimum Point Float the iso-contribution line to an optimum position. Optimum point. Algebraic Solution to an Example LP Problem Define the objective function: Z = 0.75 X + 1.82 Y Set up the resource constraints : 32X + 59 Y = 0 Y >= 0 X <= 19 Solving the Algebraic Problem 1 In this simple case, the set of algebraic equations can be easily solved by substitution. As the Simplex method is tedious, and prone to error, the solution is best found with computer software such as Excel Solver. The standard Excel spreadsheet needs to be specially adapted to run Solver. In a more complex case, the Simplex method can be manually applied. Solving the Algebraic Problem 2 Additions to the standard spreadsheet are: An ‘Activity Level’ row for output levels. A ‘Resource Supply’ column for level of supply of constrained resources. A ‘Resource Use’ column for amount of each constrained resource used, and final objective function value. A ‘Sign’ column for the inequality signs:- ( for information only; not for “Solver” solution.) Solving the Algebraic Problem 3: The Adjusted Spreadsheet Spreadsheet ready for solution. Solving the Algebraic Problem 4: Using Excel Solver Inputs to the Solver dialog box. Solving the Algebraic Problem 5: Reading the Solver Results Read the results from the Solved spreadsheet. Solving the Algebraic Problem 6: Reading the Solver Reports (a). The answer report shows the solution. Solving the Algebraic Problem 6: Reading the Solver Reports (b). The sensitivity report shows possible adjustments to the solution. Solving the Algebraic Problem 6: Reading the Solver Reports (c). The limits report shows the amount of movement allowed in the cell values within the constraint levels. Linear Programming: Summary Use when an optimum solution is required, from constrained resources. Express the objective function and the constraints as linear equations. Solve using either the graphical method, or a computerized model. Interpret the results. Consider the sensitivity of the results. Make a decision. THE END
TÀI LIỆU LIÊN QUAN
Optimization of groundnut (Arachis hopogaea L.) production technologies under various resource constraints in Konkan region
Yield and economics of maize (Zea mays L.) under various resource constraints
Resource Constraints and Linear Programming
A genetic algorithm-based method for solving multi-mode resource-constrained project scheduling problem in uncertain environment
Scheduling algorithm for user requirements on cloud computing base on deadline and budget constraints
Scheduling a maintenance activity under skills constraints to minimize total weighted tardiness and late tasks
Economics analysis of production, resource use efficiency and constraints analysis of sugarcane cultivation in East Champaran district of north Bihar
Economics, input use efficiency, yield gap and constraints analysis of sugarcane farming in West-champaran, district of Bihar: Micro perspectives
Báo cáo hóa học: " Research Article Adaptive Resource Allocation with Strict Delay Constraints in OFDMA System"
Capital Budgeting
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.