Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo khoa học: "At-Least-N Voting Improves Recall for Extracting Relations"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Several NLP tasks are characterized by asymmetric data where one class label NONE, signifying the absence of any structure (named entity, coreference, relation, etc.) dominates all other classes. Classifiers built on such data typically have a higher precision and a lower recall and tend to overproduce the NONE class. We present a novel scheme for voting among a committee of classifiers that can significantly boost the recall in such situations. We demonstrate results showing up to a 16% relative improvement in ACE value for the 2004 ACE relation extraction task for English, Arabic and Chinese. .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.