Đang chuẩn bị liên kết để tải về tài liệu:
Chapter 10: Rotation

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

In this chapter we will study the rotational motion of rigid bodies about a fixed axis. To describe this type of motion we will introduce the following new concepts | Chapter 10 Rotation In this chapter we will study the rotational motion of rigid bodies about a fixed axis. To describe this type of motion we will introduce the following new concepts: -Angular displacement -Average and instantaneous angular velocity (symbol: ω ) -Average and instantaneous angular acceleration (symbol: α ) -Rotational inertia also known as moment of inertia (symbol I ) -Torque (symbol τ ) We will also calculate the kinetic energy associated with rotation, write Newton’s second law for rotational motion, and introduce the work-kinetic energy for rotational motion (10-1) The Rotational Variables In this chapter we will study the rotational motion of rigid bodies about fixed axes. A rigid body is defined as one that can rotate with all its parts locked together and without any change of its shape. A fixed axis means that the object rotates about an axis that does not move. We can describe the motion of a rigid body rotating about a fixed axis by specifying just one parameter. Consider the rigid body of the figure. We take the the z-axis to be the fixed axis of rotation. We define a reference line which is fixed in the rigid body and is perpendicular to the rotational axis. A top view is shown in the lower picture. The angular position of the reference line at any time t is defined by the angle θ(t) that the reference lines makes with the position at t = 0. The angle θ(t) also defines the position of all the points on the rigid body because all the points are locked as they rotate. The angle θ is related to the arc length s traveled by a point at a distance r from the axis via the equation: Note: The angle θ is measured in radians (10-2) (10-3) t1 t2 (10-4) ω1 ω2 t1 t2 (10-5) (10-6) A θ s O (10-7) r O (10-8) O ri mi (10-9) In the table below we list the rotational inertias for some rigid bodies (10-10) (10-11) A (10-12) (10-13) (10-14) O 1 2 3 i ri (10-15) (10-16) (10-17) | Chapter 10 Rotation In this chapter we will study the rotational motion of rigid bodies about a fixed axis. To describe this type of motion we will introduce the following new concepts: -Angular displacement -Average and instantaneous angular velocity (symbol: ω ) -Average and instantaneous angular acceleration (symbol: α ) -Rotational inertia also known as moment of inertia (symbol I ) -Torque (symbol τ ) We will also calculate the kinetic energy associated with rotation, write Newton’s second law for rotational motion, and introduce the work-kinetic energy for rotational motion (10-1) The Rotational Variables In this chapter we will study the rotational motion of rigid bodies about fixed axes. A rigid body is defined as one that can rotate with all its parts locked together and without any change of its shape. A fixed axis means that the object rotates about an axis that does not move. We can describe the motion of a rigid body rotating about a fixed axis by specifying just one .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.