Đang chuẩn bị liên kết để tải về tài liệu:
Phương trình hàm cauchy tổng quát

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

tài liệu "Phương trình hàm cauchy tổng quát" để nắm được các kiến thức cần thiết, cũng như vận dụng vào trong việc giải các bài tập phương trình hàm cauchy thật tốt. | PHƯƠNG TRÌNH HÀM CAUCHY TỔNG QUÁT Trong bài giảng này chúng tôi sẽ đề cập đến một lớp bài toán phương trình hàm dạng f ( x) f ( y ) f ( x y ) g H ( x, y ) , (1) trong đó f và g là các hàm phải tìm còn H là hàm đã cho. Khi g 0 thì (1) trở thành phương trình hàm Cauchy. Các hàm số ở đây được xét là hàm số thực, tức là tập xác định và tập giá trị của nó là R hoặc tập con của R. 1. Phương trình hàm Cauchy và Pexider Xét phương trình Cauchy f ( x ) f ( y ) f ( x y ). (2) Bài toán 1.1: Chứng minh rằng tất cả các hàm f liên tục trên R thỏa mãn phương trình Cauchy (2) đều có dạng f ( x ) cx, ở đây c là hằng số bất kỳ. Bài toán 1.2: Chứng minh rằng tất cả các hàm f liên tục tại một điểm thỏa mãn phương trình Cauchy (2) đều có dạng f ( x ) cx, ở đây c là hằng số bất kỳ. Bài toán 1.3: Chứng minh rằng tất cả các hàm f không âm (không dương) với x dương đủ nhỏ thỏa mãn (2) đều có dạng f ( x ) cx, ở đây c là hằng số dương (âm) bất kỳ. Bài toán 1.4: Chứng minh rằng tất cả các hàm f bị chặn trên một khoảng đủ nhỏ thỏa mãn (2) đều có dạng f ( x ) cx, ở đây c là hằng số. Bài toán 1.5: Chứng minh rằng tất cả các hàm f bị chặn một phía (bị chặn trên hoặc bị chặn dưới) trên một đoạn [a,b] cho trước và thỏa mãn (2) đều có dạng f ( x ) cx, ở đây c là hằng số. Bài toán 1.6: Chứng minh rằng tất cả các hàm f đơn điệu thỏa mãn (2) đều có dạng f ( x ) cx, ở đây c là hằng số. Bài toán 1.7: Chứng minh rằng tất cả các hàm f khả tích trên mọi đoạn hữu hạn và thỏa mãn (2) đều có dạng f ( x ) cx, ở đây c là hằng số bất kỳ. Định lý 1: Giả sử f : R R là nghiệm của (2) với c f (1) 0 . Khi đó ta có các khẳng định sau là tương đương. (i) f liên tục tại một điểm x 0 . (ii) f liên tục. 1 (iii) f là hàm đơn điệu tăng. (iv) f không âm với mọi x 0. (v) f bị chặn trên trên một đoạn hữu hạn. (vi) f bị chặn dưới trên một đoạn hữu hạn. (vii) f bị chặn trên (dưới) trên một tập bị chặn có độ do Lebesgue dương. (viii) f bị chặn trên một đoạn hữu hạn. (ix) f ( x ) cx. (x) f

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.