Đang chuẩn bị liên kết để tải về tài liệu:
Lecture Discrete mathematics and its applications (7/e) – Chapter 12: Boolean algebra

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Lecture Discrete mathematics and its applications (7/e) – Chapter 12: Boolean algebra. This chapter presents the following content: Boolean functions, representing boolean functions, logic gates, minimization of circuits. | Boolean Algebra Chapter 12 Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary Boolean Functions Representing Boolean Functions Logic Gates Minimization of Circuits (not currently included in overheads) Claude Shannon (1916 - 2001) Boolean Functions Section 12.1 Section Summary Introduction to Boolean Algebra Boolean Expressions and Boolean Functions Identities of Boolean Algebra Duality The Abstract Definition of a Boolean Algebra Introduction to Boolean Algebra Boolean algebra has rules for working with elements from the set {0, 1} together with the operators + (Boolean sum), (Boolean product), and . These operators are defined by: Boolean sum: 1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0 Boolean product: 1 1 = 1, 1 0 = 0, 0 1 = 0, 0 0 = 0 complement: = 1, = 0 Example: Find the value of 1 0 + Solution : 1 0 + = 0 + = 0 + 0 = 0 Boolean Expressions and Boolean Functions Definition: Let B = {0, 1}. Then Bn = {(x1, x2, , xn) | xi ∈ B for 1 ≤ i ≤ n } is the set of all possible n-tuples of 0s and 1s. The variable x is called a Boolean variable if it assumes values only from B, that is, if its only possible values are 0 and 1. A function from Bn to B is called a Boolean function of degree n. Example: The function F(x, y) = x from the set of ordered pairs of Boolean variables to the set {0, 1} is a Boolean function of degree 2. Boolean Expressions and Boolean Functions (continued) Example: Find the values of the Boolean function represented by F(x, y, z) = xy + . Solution: We use a table with a row for each combination of values of x, y, and z to compute the values of F(x,y,z). Boolean Expressions and Boolean Functions (continued) Definition: Boolean functions F and G of n variables are equal if and only if F(b1, b2, , bn)= G(b1, b2, , bn) whenever b1, b2, , bn belong to B. Two different Boolean expressions that represent the same function are . | Boolean Algebra Chapter 12 Copyright © McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education. Chapter Summary Boolean Functions Representing Boolean Functions Logic Gates Minimization of Circuits (not currently included in overheads) Claude Shannon (1916 - 2001) Boolean Functions Section 12.1 Section Summary Introduction to Boolean Algebra Boolean Expressions and Boolean Functions Identities of Boolean Algebra Duality The Abstract Definition of a Boolean Algebra Introduction to Boolean Algebra Boolean algebra has rules for working with elements from the set {0, 1} together with the operators + (Boolean sum), (Boolean product), and . These operators are defined by: Boolean sum: 1 + 1 = 1, 1 + 0 = 1, 0 + 1 = 1, 0 + 0 = 0 Boolean product: 1 1 = 1, 1 0 = 0, 0 1 = 0, 0 0 = 0 complement: = 1, = 0 Example: Find the value of 1 0 + Solution : 1 0 + = 0 + = 0 + 0 = 0 Boolean Expressions and Boolean .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.