Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Dự báo trên chuỗi thời gian bằng phương pháp so trùng mẫu dưới độ đo xoắn thời gian động
Đang chuẩn bị liên kết để tải về tài liệu:
Dự báo trên chuỗi thời gian bằng phương pháp so trùng mẫu dưới độ đo xoắn thời gian động
Quỳnh Chi
172
13
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Bài viết Dự báo trên chuỗi thời gian bằng phương pháp so trùng mẫu dưới độ đo xoắn thời gian động trình bày Dự báo trên chuỗi thời gian đã và đang nhận đươc nhiều quan tâm nghiên cứu trong những năm qua do tính đơn giản và khả năng dự báo trên các chuỗi thời gian phi tuyến phức tạp,. . | TRƯỜNG ĐẠI HỌC SƯ PHẠM TP HỒ CHÍ MINH HO CHI MINH CITY UNIVERSITY OF EDUCATION TẠP CHÍ KHOA HỌC JOURNAL OF SCIENCE KHOA HỌC TỰ NHIÊN VÀ CÔNG NGHỆ NATURAL SCIENCES AND TECHNOLOGY ISSN: 1859-3100 Tập 15, Số 3 (2018): 148-160 Vol. 15, No. 3 (2018): 148-160 Email: tapchikhoahoc@hcmue.edu.vn; Website: http://tckh.hcmue.edu.vn PATTERN MATCHING UNDER DYNAMIC TIME WARPING FOR TIME SERIES PREDICTION Nguyen Thanh Son* Faculty of Information Technology Ho Chi Minh City University of Technology and Education Received: 01/11/2017; Revised: 11/12/2017; Accepted: 26/3/2018 ABSTRACT Time series forecasting based on pattern matching has received a lot of interest in the recent years due to its simplicity and the ability to predict complex nonlinear behavior. In this paper, we investigate into the predictive potential of the method using k-NN algorithm based on R*-tree under dynamic time warping (DTW) measure. The experimental results on four real datasets showed that this approach could produce promising results in terms of prediction accuracy on time series forecasting when comparing to the similar method under Euclidean distance. Keywords: dynamic time warping, k-nearest neighbor, pattern matching, time series prediction. TÓM TẮT Dự báo trên chuỗi thời gian bằng phương pháp so trùng mẫu dưới độ đo xoắn thời gian động Dự báo trên chuỗi thời gian đã và đang nhận đươc nhiều quan tâm nghiên cứu trong những năm qua do tính đơn giản và khả năng dự báo trên các chuỗi thời gian phi tuyến phức tạp. Trong bài báo này, chúng tôi nghiên cứu sử dụng thuật toán k-NN dựa trên R*-tree dưới độ đo DTW cho bài toán dự báo trên chuỗi thời gian. Các kết quả thực nghiệm trên bốn tập dữ liệu thực cho thấy cách tiếp cận này có thể cho kết quả dự báo chính xác hơn khi so sánh với phương pháp tương tự sử dụng độ đo Euclid. Từ khóa: dự báo trên chuỗi thời gian, k lân cận gần nhất, so trùng mẫu, xoắn thời gian động. 1. Introduction A time series is a sequence of real numbers where each number .
TÀI LIỆU LIÊN QUAN
Bài giảng Dự báo trong kinh doanh - Chương 3: Chuỗi thời gian và dự báo trên chuỗi thời gian
Phương pháp dự báo chuỗi thời gian dựa trên chuỗi thời gian mờ theo tiếp cận đại số gia tử
Dự báo chuỗi thời gian mờ dựa trên ngữ nghĩa
Dự báo trên chuỗi thời gian bằng phương pháp so trùng mẫu dưới độ đo xoắn thời gian động
Dự báo chuỗi thời gian mờ dựa trên nhóm quan hệ mờ phụ thuộc thời gian và tối ưu bầy đàn
Một phương pháp mới dự báo chuỗi thời gian mờ dựa trên ngữ nghĩa ngôn ngữ
Mô hình dự báo chuỗi thời gian mờ sử dụng kỹ thuật phân cụm dựa trên đồ thị
Dự báo chuỗi thời gian mờ dựa trên đại số gia tử
Bài giảng Thống kê ứng dụng (TS Nguyễn Tiến Dũng) - Chương 14 Chuỗi thời gian và dự báo trên chuỗi thời gian
Luận văn Thạc sĩ Khoa học máy tính: Dự báo chuỗi thời gian mờ dựa trên đại số gia tử và ứng dụng dự báo tuyển sinh cho trường Cao đẳng Sư Phạm Nam Định
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.