Đang chuẩn bị liên kết để tải về tài liệu:
On conjugation in the mod p-steenrod algebra

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

In this paper we prove a formula involving the canonical anti-automorphism χ of the mod-p Steenrod algebra. We would like to sincerely thank referee for many helpful comments on this paper | Turk J Math 24 (2000) , 359 – 365. ¨ ITAK ˙ c TUB On Conjugation in the Mod-p Steenrod algebra Ismet Karaca and Ilkay Yaslan Karaca Abstract In this paper we prove a formula involving the canonical anti-automorphism χ of the mod-p Steenrod algebra. Key Words: Steenrod algebra, anti-automorphism, Milnor basis 1. Introduction and Main Result Let A be a mod-p Steenrod algebra. Let R = (r1 , r2 , . . . ) be a sequence of nonnegative integers with finitely many nonzero terms. Let P(R) denote the corresponding Milnor basis element in A so that the elements P(R) form an additive basis for the subalgebra ∞ P pi − 1 r i Ap of A generated by the Steenrod powers P i , i ≥ 0. We define |R| = i=1 and e(R) = ∞ P ri . Thus, considered as a mod-p cohomology operation, P(R) raises the i=1 dimension of a cohomology class by 2 |R| and has excess 2e(R). The anti-automorphism χ of Ap plays a fundamental part in our argument, and we find it convenient to write θb = (−1)dimθ χ(θ) for every element θ ∈ Ap . We are interested in an explicit conjugation formula for the Steenrod operations of Ap in the form X(k, n) = P(pk n)P(pk−1 n) · · · P(pn)P(n), AMS Mathematics Subject Classification: Primary 55S10, 55S05 359 KARACA, KARACA where k and n are nonnegative integers. So the following formula is the mod-p analogue of Theorem 3.1 in [6]. Theorem 1.1 For all positive integers j and i, we have b pi+1 − 1) = X(i, pj+1 − 1). X(j, We will introduce the following useful notation: each natural number a has a unique p-adic expansion a= ∞ X αi (a)pi i=0 with 0 ≤ αi (a) l, suppose that (1) m + n = pk − pl (2) m 0, we have p−1 X p−1 l l−1 b b b ))P(pm+(p−1)pl )− ). P(m+wpl−1 )·P(n−wp P(m)·P(n) = P(n−(p−1)(m+p w w=1 Proof. (i) Let l = 0. Using Proposition 1.3, we have X |R| + e(R) P(R), pm b P(m) · P(n) = R and b − (p − 1)m − 1) · P(pm + 1) = P(n X e(R) P(R), pm + 1 R where |R| = (p − 1)(pk − 1) and 1 ≤ e(R) ≤ pk − 1. In order to prove these sums are equivalent in .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.