Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Seiberg–Witten-like equations on 5-dimensional contact metric manifolds
Đang chuẩn bị liên kết để tải về tài liệu:
Seiberg–Witten-like equations on 5-dimensional contact metric manifolds
Vũ Minh
89
7
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
In this paper, we write Seiberg–Witten-like equations on contact metric manifolds of dimension 5. Since any contact metric manifold has a Spinc-structure, we use the generalized Tanaka–Webster connection on a Spinc spinor bundle of a contact metric manifold to define the Dirac-type operators and write the Dirac equation. | Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Turk J Math (2014) 38: 812 – 818 ¨ ITAK ˙ c TUB ⃝ doi:10.3906/mat-1303-34 Seiberg–Witten-like equations on 5-dimensional contact metric manifolds ∗∗ ˇ IRMENC ˙ ˙ S Nedim DEG I, ¸ enay BULUT∗ Department of Mathematics, Faculty of Science, Anadolu University, Eski¸sehir, Turkey Received: 18.03.2013 • Accepted: 26.02.2014 • Published Online: 01.07.2014 • Printed: 31.07.2014 Abstract: In this paper, we write Seiberg–Witten-like equations on contact metric manifolds of dimension 5 . Since any contact metric manifold has a Spin c -structure, we use the generalized Tanaka–Webster connection on a Spin c spinor bundle of a contact metric manifold to define the Dirac-type operators and write the Dirac equation. The self-duality of 2 -forms needed for the curvature equation is defined by using the contact structure. These equations admit a nontrivial solution on 5 -dimensional strictly pseudoconvex CR manifolds whose contact distribution has a negative constant scalar curvature. Key words: Seiberg–Witten equations, spinor, Dirac operator, contact metric manifold, self-duality 1. Introduction Seiberg–Witten equations were defined on 4-dimensional Riemannian manifolds by Witten in [14]. The solution space of these equations gives differential topological invariants for 4-manifolds [1, 11]. Some generalizations were given later on higher dimensional manifolds [4, 7, 10]. Seiberg–Witten equations consist of 2 equations. The first is the Dirac equation, which is meaningful for the manifolds having Spin c −structure. The second is the curvature equation, which couples the self-dual part of a connection 2-form with a spinor field. In order to be able to write down the curvature equation, the notion of the self-duality of a 2-form is needed. This notion is meaningful for 4 -dimensional Riemannian manifolds. On the other hand, there are similar self-duality notions for some higher .
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.