Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
The cross curvature flow of 3-manifolds with negative sectional curvature
Đang chuẩn bị liên kết để tải về tài liệu:
The cross curvature flow of 3-manifolds with negative sectional curvature
Tuyết Anh
216
10
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
In the case of negative sectional curvature, we obtain some monotonicity formulas which support the conjecture that after normalization, for initial metrics on closed 3-manifolds with negative sectional curvature, the solution exists for all time and converges to a hyperbolic metric. This conjecture is still open at the present time. | Turk J Math 28 (2004) , 1 – 10. ¨ ITAK ˙ c TUB The Cross Curvature Flow of 3-Manifolds with Negative Sectional Curvature Bennett Chow∗ , Richard S. Hamilton Abstract We consider the cross curvature flow, an evolution equation of metrics on 3manifolds. We establish short time existence when the sectional curvature has a sign. In the case of negative sectional curvature, we obtain some monotonicity formulas which support the conjecture that after normalization, for initial metrics on closed 3-manifolds with negative sectional curvature, the solution exists for all time and converges to a hyperbolic metric. This conjecture is still open at the present time. 1. The evolution equation When n = 3, it is an old conjecture, which is also a consequence of the Geometrization Conjecture, that any closed 3-manifold with negative sectional curvature admits a hyperbolic metric. In this article, we introduce an evolution equation which deforms metrics on 3-manifolds with sectional curvature of one sign. Given a closed 3-manifold with an initial metric with negative sectional curvature, we conjecture that this flow will exist for all time and converge to a hyperbolic metric after a normalization. We shall establish some results, including monotonicity formulae, in support of this conjecture. Note that in contrast to negative sectional curvature, every closed n -manifold admits a metric with negative Ricci curvature by the work of Gao and Yau [6], [7] for n = 3 and Lohkamp [12] for all n ≥ 3. When n ≥ 4, Gromov and Thurston [8] have shown that there exist closed manifolds with arbitrarily pinched negative sectional curvature which do not admit metrics with constant negative sectional curvature. It is unknown whether such manifolds admit Einstein metrics. In particular, the stability result for Ricci flow of Ye [15] assumes more than just curvature pinching depending only on dimension.1 Let (M, g) be a 3-dimensional Riemannian manifold with negative sectional curvature. The .
TÀI LIỆU LIÊN QUAN
Development of new cross intermolecular pair potential ab initio and prediction of cross second virial coefficients for dimer H2O-CH4
Ebook Critical issues in cross cultural management: Part 2
Cross-observables and cross-isotopes correlations in nuclear data from integral constraints
A lossy coding scheme for images by using the haar wavelet transform and the theory of ideal cross points regions
The kumada - corriu cross - coupling reaction in micro reactor: Advantages over conventional batch reactor
Atomic displacement cross-sections for neutron irradiation of materials from Be to Bi calculated using the arc-dpa model
A cross – cultural perspective of speech acts and its application to EFL classrooms
Truck-to-door sequencing in multi-door cross-docking system with dock repeat truck holding pattern
Statistical investigations to milk yield data of Jersey and Holstein friesian cross breeds
Application of cross flow turbine with multi nozzle in remote areas
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.