Đang chuẩn bị liên kết để tải về tài liệu:
P-elastica in the 3-dimensional lorentzian space forms

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

R Huang worked the p-elastic in a Riemannian manifold with constant sectional curvature. In this work, we solve the Euler-Lagrange equation by quadrature and study the Frenet equation of the p-elastica by using the Killing field in the three dimensional Lorentzian space forms. | Turk J Math 30 (2006) , 33 – 41. ¨ ITAK ˙ c TUB p-Elastica in the 3-Dimensional Lorentzian Space Forms Nevin G¨ urb¨ uz Abstract R Huang worked the p-elastic in a Riemannian manifold with constant sectional curvature [1]. In this work, we solve the Euler-Lagrange equation by quadrature and study the Frenet equation of the p-elastica by using the Killing field in the three dimensional Lorentzian space forms. 1. Introduction Definition 1.1 Let L be a 3-dimensional Lorentzian space. If (x1 , x2, x3 ) and (y1 , y2 , y3 ) are the components of X and Y with respect to an allowable coordinate system, then hX, Y i |L = x1 y1 + x2 y2 − x3 y3 which is called a Lorentzian inner product. Furthermore, a Lorentz exterior product X×Y is given by X × Y = (x2 y3 − x3 y2 , x3 y1 − x1 y3 , x2y1 − x1 y2 ). Then, for any x ∈ L3 it holds ([2]) 2 hX × Y, X × Y i = hX, Y i − hX, Xi hY, Y i . Mathematics Subject Classification: 53A04, 35Q51, 53B99, 53A35. 33 ¨ ¨ GURB UZ Definition 1.2 A semi-Riemannian manifold M has constant curvature if its sectional curvature function is constant. If M constant curvature C , then ([3]) Rxy z = C{hz, xi y − hz, yi x}. −−→ − → Definition 1.3 The norm of X ∈ R31 is denoted by kXk and defined as ([3]) −−→ kXk = r D → − →E − X , X . Theorem 1.1 Let γ(s) be a unit speed curve in R31 , s the arclength parameter. Consider the Frenet frame {T = γ 0 , N, B} attached to the curve γ = γ(s) such that is T is the unit tangent vector field, N is the principal normal vector field and B = T × N is the binormal vector field. The Frenet -Serret formulas is given by ∇T T = T 0 0 ∇T N = N 0 = −ε1 κ ∇T B = B 0 0 ε2 κ 0 ε2 τ 0 T −ε3 τ N , 0 B (1.1) where hT, T i = ε1 , hN, N i = ε2 , hB, Bi = ε3 . ∇ is the semi Riemannian connection on M and κ = κ(s) and τ = τ (s) are the curvature and the torsion functions of γ, respectively. 2. Killing Fields This section is taken from [4], [5]. Let γ(t) be a nonnull .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.