Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Digital topological complexity numbers
Đang chuẩn bị liên kết để tải về tài liệu:
Digital topological complexity numbers
Nhã Khanh
72
9
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
The intersection of topological robotics and digital topology leads to us a new workspace. In this paper we introduce the new digital homotopy invariant digital topological complexity number T C(X, κ) for digital images and give some examples and results about it. | Turk J Math (2018) 42: 3173 – 3181 © TÜBİTAK doi:10.3906/mat-1807-101 Turkish Journal of Mathematics http://journals.tubitak.gov.tr/math/ Research Article Digital topological complexity numbers İsmet KARACA∗,, Melih İS, Department of Mathematics, Faculty of Science, Ege University, İzmir, Turkey Received: 13.07.2018 • Accepted/Published Online: 15.10.2018 • Final Version: 27.11.2018 Abstract: The intersection of topological robotics and digital topology leads to us a new workspace. In this paper we introduce the new digital homotopy invariant digital topological complexity number T C(X, κ) for digital images and give some examples and results about it. Moreover, we examine adjacency relations in the digital spaces and observe how T C(X, κ) changes when we take a different adjacency relation in the digital spaces. Key words: Topological complexity number, digital topology, digital topological complexity number 1. Introduction Topological robotics is an area that uses some topological properties to compute the homotopy invariant topological complexity number T C(X) , mostly in mechanics and robot motion planning problems. Michael Farber [16] first introduced the topological complexity number T C(X) that measures the degree of the deflection of the contractibility of a given area for a robot . After that, Farber published many works on this subject, such as [17–20]. Besides Farber, Grant [23], Dranishnikov [12], Tabachnikov and Yuzvinsky [22], and other researchers have improved it with their different works. Simply, T C(X) computes the minimum number that is an invariant in topology (and of course in algebraic topology too) for a robot to move from our given initial point to our given final point. This number requires a continuous motion planning algorithm. A motion planning algorithm in a path-connected space X takes two points a and b of X and composes a path α in X such that α(0) = a and α(1) = b. Therefore, we observe that robotics are motivated by this
TÀI LIỆU LIÊN QUAN
Digital topological complexity numbers
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.