Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Kĩ thuật Viễn thông
Kalman Filtering and Neural Networks - Chapter 5: DUAL EXTENDED KALMAN FILTER METHODS
Đang chuẩn bị liên kết để tải về tài liệu:
Kalman Filtering and Neural Networks - Chapter 5: DUAL EXTENDED KALMAN FILTER METHODS
Hữu Tài
72
51
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
The Extended Kalman Filter (EKF) provides an efficient method for generating approximate maximum-likelihood estimates of the state of a discrete-time nonlinear dynamical system (see Chapter 1). The filter involves a recursive procedure to optimally combine noisy observations with predictions from the known dynamic model. A second use of the EKF involves estimating the parameters of a model (e.g., neural network) given clean training data of input and output data (see Chapter 2). | Kalman Filtering and Neural Networks Edited by Simon Haykin Copyright 2001 John Wiley Sons Inc. ISBNs 0-471-36998-5 Hardback 0-471-22154-6 Electronic 5 DUAL EXTENDED KALMAN FILTER METHODS Eric A. Wan and Alex T. Nelson Department of Electrical and Computer Engineering Oregon Graduate Institute of Science and Technology Beaverton Oregon U.S.A. 5.1 INTRODUCTION The Extended Kalman Filter EKF provides an efficient method for generating approximate maximum-likelihood estimates of the state of a discrete-time nonlinear dynamical system see Chapter 1 . The filter involves a recursive procedure to optimally combine noisy observations with predictions from the known dynamic model. A second use of the EKF involves estimating the parameters of a model e.g. neural network given clean training data of input and output data see Chapter 2 . In this case the EKF represents a modified-Newton type of algorithm for on-line system identification. In this chapter we consider the dual estimation problem in which both the states of the dynamical system and its parameters are estimated simultaneously given only noisy observations. 123 124 5 DUAL EXTENDED KALMAN FILTER METHODS To be more specific we consider the problem of learning both the hidden states xk and parameters w of a discrete-time nonlinear dynamical system Xk 1 - F Xk Uk w vk 5 yk- H xk w nk where both the system states xk and the set of model parameters w for the dynamical system must be simultaneously estimated from only the observed noisy signal yk. The process noise vk drives the dynamical system observation noise is given by nk and Uk corresponds to observed exogenous inputs. The model structure F - and H - may represent multilayer neural networks in which case w are the weights. The problem of dual estimation can be motivated either from the need for a model to estimate the signal or in other applications from the need for good signal estimates to estimate the model. In general applications can be divided into the tasks
TÀI LIỆU LIÊN QUAN
Kalman Filtering and Neural Networks - Chapter 1: KALMAN FILTERS
Kalman Filtering and Neural Networks - Chapter 2: PARAMETER-BASED KALMAN FILTER TRAINING: THEORY AND IMPLEMENTATION
Kalman Filtering and Neural Networks - Chapter 5: DUAL EXTENDED KALMAN FILTER METHODS
Kalman Filtering and Neural Networks - Chapter VII: THE UNSCENTED KALMAN FILTER
Kalman Filtering and Neural Networks - Chapter 3: LEARNING SHAPE AND MOTION FROM IMAGE SEQUENCES
Kalman Filtering and Neural Networks - Chapter 4: CHAOTIC DYNAMICS
Kalman Filtering and Neural Networks - Chapter 6: LEARNING NONLINEAR DYNAMICAL SYSTEMS USING THE EXPECTATION– MAXIMIZATION ALGORITHM
Kalman Filtering and Neural Networks - Contents
Kalman Filtering and Neural Networks P1
Kalman Filtering and Neural Networks P2
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.