Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Cơ khí - Chế tạo máy
Adaptive probabilistic tracking with visual saliency selection reliable particles
Đang chuẩn bị liên kết để tải về tài liệu:
Adaptive probabilistic tracking with visual saliency selection reliable particles
Mạnh Tấn
189
6
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
The saliency selection reliable particles are used to estimate the target state. Finally, experimental results demonstrate the efficiency and effectiveness of the proposed method in presence of occlusion and large illumination variation, even non-target with similar features. | Journal of Automation and Control Engineering Vol. 3, No. 5, October 2015 Adaptive Probabilistic Tracking with Visual Saliency Selection Reliable Particles Linshan Liu, Suiwu Zheng, and Hong Qiao State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, Beijing, China Email: {linshan.liu, suiwu.zheng, hong.qiao}@ia.ac.cn However, color distribution becomes ineffective in the presence of illumination changes. Edges are sensitive to clutter and computationally expensive. Mahadevan and Vasconcelos [6] show that saliency feature played an important role in object tracking. For the better performances, one can combine saliency and other features as in [7]-[9]. In [7], an improved Itti model [5] is employed to measure the similarity between tracked object and candidate one, which was more accurate. In addition, target model was used as prior knowledge to calculate the weight set which was utilized to construct their saliency features adaptively [8]. D. Sidibé [9] introduces frequency tuned saliency features into particle filter. However, all of the approaches either suffer very large computational complexity in real applications or do not use the background information which is likely to improve tracking stability. Therefore, these methods are apt to be distracted by background with similar features which is likely to cause drift. Target model as prior knowledge may be ineffective when it changes drastically. In this paper, we provide an effective and efficient adaptive probabilistic tracking approach with saliency selection reliable particles. We introduce a binary, simple and holistic image descriptor called the “image signature” [10] to extract saliency features of the object. The proposed method estimates the weight of each particle through the saliency measurement implemented by Hamming distance between target model and each hypothetical observation, but also through background model and each .
TÀI LIỆU LIÊN QUAN
Adaptive probabilistic tracking with visual saliency selection reliable particles
Báo cáo hóa học: " Research Article Adaptive Probabilistic Tracking Embedded in Smart Cameras for Distributed Surveillance in a 3D Model"
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.