Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Hupsmt: An efficient algorithm for mining high utility probability sequences in uncertain databases with multiple minimum utility thresholds
Đang chuẩn bị liên kết để tải về tài liệu:
Hupsmt: An efficient algorithm for mining high utility probability sequences in uncertain databases with multiple minimum utility thresholds
Trà Giang
55
20
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
This paper proposes a framework for mining high utility-probability sequences (HUPSs) in uncertain QSDBs (UQSDBs) with multiple minimum utility thresholds using a minimum utility. Two new width and depth pruning strategies are also introduced to eliminate low utility or low probability sequences as well as their extensions early, and to reduce the sets of candidate items for extensions during the mining process. | Journal of Computer Science and Cybernetics, V.35, N.1 (2019), 1–20 DOI 10.15625/1813-9663/35/1/13234 HUPSMT: AN EFFICIENT ALGORITHM FOR MINING HIGH UTILITY-PROBABILITY SEQUENCES IN UNCERTAIN DATABASES WITH MULTIPLE MINIMUM UTILITY THRESHOLDS TRUONG CHI TIN1,∗ , TRAN NGOC ANH1 , DUONG VAN HAI1,2 , LE HOAI BAC2 1 Department of Mathematics and Computer Science, University of Dalat 2 Department of Computer Science, VNU-HCMC University of Science ∗ tintc@dlu.edu.vn Abstract. The problem of high utility sequence mining (HUSM) in quantitative sequence databases (QSDBs) is more general than that of mining frequent sequences in sequence databases. An important limitation of HUSM is that a user-predefined minimum utility threshold is used to decide if a sequence is high utility. However, this is not suitable for many real-life applications as sequences may differ in importance. Another limitation of HUSM is that data in QSDBs are assumed to be precise. But in the real world, data collected by sensors, or other means, may be uncertain. Thus, this paper proposes a framework for mining high utility-probability sequences (HUPSs) in uncertain QSDBs (UQSDBs) with multiple minimum utility thresholds using a minimum utility. Two new width and depth pruning strategies are also introduced to eliminate low utility or low probability sequences as well as their extensions early, and to reduce the sets of candidate items for extensions during the mining process. Based on these strategies, a novel efficient algorithm named HUPSMT is designed for discovering HUPSs. Finally, an experimental study conducted with both real-life and synthetic UQSDBs shows the performance of HUPSMT in terms of time and memory consumption. Keywords. High utility-probability sequence; Uncertain quantitative sequence database; Upper and lower-bounds; Width and depth pruning strategies. 1. INTRODUCTION Discovering frequent itemsets in transaction databases and frequent sequences in sequence databases .
TÀI LIỆU LIÊN QUAN
Hupsmt: An efficient algorithm for mining high utility probability sequences in uncertain databases with multiple minimum utility thresholds
Hupsmt: An efficient algorithm for mining high utility probability sequences in uncertain databases with multiple minimum utility threshold
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.