Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Kỹ Thuật - Công Nghệ
Kĩ thuật Viễn thông
Independent Component Analysis - Chapter 17: Nonlinear ICA
Đang chuẩn bị liên kết để tải về tài liệu:
Independent Component Analysis - Chapter 17: Nonlinear ICA
Diễm Chi
60
26
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
This chapter deals with independent component analysis (ICA) for nonlinear mixing models. A fundamental difficulty in the nonlinear ICA problem is that it is highly nonunique without some extra constraints, which are often realized by using a suitable regularization. We also address the nonlinear blind source separation (BSS) problem. Contrary to the linear case, we consider it different from the respective nonlinear ICA problem. | Independent Component Analysis. Aapo Hyvarinen Juha Karhunen Erkki Oja Copyright 2001 John Wiley Sons Inc. ISBNs 0-471-40540-X Hardback 0-471-22131-7 Electronic 17 Nonlinear ICA This chapter deals with independent component analysis ICA for nonlinear mixing models. A fundamental difficulty in the nonlinear ICA problem is that it is highly nonunique without some extra constraints which are often realized by using a suitable regularization. We also address the nonlinear blind source separation BSS problem. Contrary to the linear case we consider it different from the respective nonlinear ICA problem. After considering these matters some methods introduced for solving the nonlinear ICA or BSS problems are discussed in more detail. Special emphasis is given to a Bayesian approach that applies ensemble learning to a flexible multilayer perceptron model for finding the sources and nonlinear mixing mapping that have most probably given rise to the observed mixed data. The efficiency of this method is demonstrated using both artificial and real-world data. At the end of the chapter other techniques proposed for solving the nonlinear ICA and BSS problems are reviewed. 17.1 NONLINEAR ICA AND BSS 17.1.1 The nonlinear ICA and BSS problems In many situations the basic linear ICA or BSS model n x As 17.1 j i is too simple for describing the observed data x adequately. Hence it is natural to consider extension of the linear model to nonlinear mixing models. For instantaneous 315 316 NONLINEAR ICA mixtures the nonlinear mixing model has the general form x f s 17.2 where x is the observed m-dimensional data mixture vector f is an unknown realvalued m-component mixing function and s is an n-vector whose elements are the n unknown independent components. Assume now for simplicity that the number of independent components n equals the number of mixtures m. The general nonlinear ICA problem then consists of finding a mapping h R R that gives components y h x 17.3 that are statistically
TÀI LIỆU LIÊN QUAN
Data-driven human transcriptomic modules determined by independent component analysis
MetICA: Independent component analysis for high-resolution mass-spectrometry based non-targeted metabolomics
Aggregate blood pressure responses to serial dietary sodium and potassium intervention: Defining responses using independent component analysis
Báo cáo hóa học: "Research Article Independent Component Analysis for Magnetic Resonance Image Analysis"
Bài 1: Introduction(Independent component analysis (ICA)
Bài 7: What is Independent Component Analysis?
Báo cáo hóa học: " Research Article Cancelling ECG Artifacts in EEG Using a Modified Independent Component Analysis Approach"
Báo cáo hóa học: " Research Article WMicaD: A New Digital Watermarking Technique Using Independent Component Analysis"
Báo cáo hóa học: "A Reconfigurable FPGA System for Parallel Independent Component Analysis"
Báo cáo hóa học: " Blind Separation of Acoustic Signals Combining SIMO-Model-Based Independent Component Analysis and Binary Masking"
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.