Đang chuẩn bị liên kết để tải về tài liệu:
14 chuyên đề bồi dưỡng học sinh giỏi Toán 9

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tài liệu 14 chuyên đề bồi dưỡng học sinh giỏi Toán 9 dành cho các bạn học sinh lớp ôn tập kiến thức và rèn luyện kỹ năng giải toán hiệu quả. Ngoài ra, quý thầy cô có thể sử dụng làm tư liệu tham khảo phục vụ cho công tác giảng dạy và biên soạn đề thi. . | 14 chuyên đề bồi dưỡng học sinh giỏi Toán 9 14 CHUYÊN ĐỀ BỒI DƯỠNG HỌC SINH GIỎI TOÁN 9 CHUYÊN ĐỀ 1 : ĐA THỨC B. CÁC PHƯƠNG PHÁP VÀ BÀI TẬP: I. TÁCH MỘT HẠNG TỬ THÀNH NHIỀU HẠNG TỬ: * Định lí bổ sung: + Đa thức f(x) có nghiệm hữu tỉ thì có dạng p/q trong đó p là ước của hệ số tự do, q là ước dương của hệ số cao nhất + Nếu f(x) có tổng các hệ số bằng 0 thì f(x) có một nhân tử là x – 1 + Nếu f(x) có tổng các hệ số của các hạng tử bậc chẵn bằng tổng các hệ số của các hạng tử bậc lẻ thì f(x) có một nhân tử là x + 1 f(1) f(-1) + Nếu a là nghiệm nguyên của f(x) và f(1); f(- 1) khác 0 thì và đều là số a-1 a+1 nguyên. Để nhanh chóng loại trừ nghiệm là ước của hệ số tự do 1. Ví dụ 1: 3x2 – 8x + 4 Cách 1: Tách hạng tử thứ 2 3x2 – 8x + 4 = 3x2 – 6x – 2x + 4 = 3x(x – 2) – 2(x – 2) = (x – 2)(3x – 2) Cách 2: Tách hạng tử thứ nhất: 3x2 – 8x + 4 = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – 2 + x)(2x – 2 – x) = (x – 2)(3x – 2) 2. Ví dụ 2: x3 – x2 - 4 Ta nhân thấy nghiệm của f(x) nếu có thì x = 1; 2; 4 , chỉ có f(2) = 0 nên x = 2 là nghiệm của f(x) nên f(x) có một nhân tử là x – 2. Do đó ta tách f(x) thành các nhóm có xuất hiện một nhân tử là x – 2 Cách 1: x3 - x2 – 4 = x 3 2x 2 x 2 2x 2x 4 x 2 x 2 x(x 2) 2(x 2) = x 2 x 2 x 2 Cách 2: x 3 x 2 4 x 3 8 x 2 4 x 3 8 x 2 4 (x 2)(x 2 2x 4) (x 2)(x 2) = x 2 x 2 2x 4 (x 2) (x 2)(x 2 x 2) 3. Ví dụ 3: f(x) = 3x3 – 7x2 + 17x – 5 Nhận xét: 1, 5 không là nghiệm của f(x), như vậy f(x) không có nghiệm nguyên. Nên f(x) nếu có nghiệm thì là nghiệm hữu tỉ 1 Ta nhận thấy x = là nghiệm của f(x) do đó f(x) có một nhân tử là 3x – 1. Nên 3 f(x) = 3x3 – 7x2 + 17x – 5 = 3x 3 x 2 6x 2 2x 15x 5 3x 3 x 2 6x 2 2x 15x 5 = x 2 (3x 1) 2x(3x 1) 5(3x 1) (3x 1)(x 2 2x 5) Vì x 2 2x 5 (x 2 2x 1) 4 (x 1) 2 4 0 với mọi x nên .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.