Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Sinh học
Hyers-Ulam stability for nonlocal differential equations
Đang chuẩn bị liên kết để tải về tài liệu:
Hyers-Ulam stability for nonlocal differential equations
Việt Quốc
102
7
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
In this paper, we present a result on Hyers-Ulam stability for a class of nonlocal differential equations in Hilbert spaces by using the theory of integral equations with completely positive kernels together with a new Gronwall inequality type. The paper develops some recent results on fractional differential equations to the ones involving general nonlocal derivatives. Instead of Mittag-Leffler functions, we must utilize the characterization of relaxation function. | HNUE JOURNAL OF SCIENCE DOI 10.18173 2354-1059.2020-0041 Natural Science 2020 Volume 65 Issue 10 pp. 3-9 This paper is available online at http stdb.hnue.edu.vn HYERS-ULAM STABILITY FOR NONLOCAL DIFFERENTIAL EQUATIONS Nguyen Van Dac1 and Pham Anh Toan2 1 Faculty of Computer Science and Engineering Thuyloi University 2 Nguyen Thi Minh Khai High School Hanoi Abstract. In this paper we present a result on Hyers-Ulam stability for a class of nonlocal differential equations in Hilbert spaces by using the theory of integral equations with completely positive kernels together with a new Gronwall inequality type. The paper develops some recent results on fractional differential equations to the ones involving general nonlocal derivatives. Instead of Mittag-Leffler functions we must utilize the characterization of relaxation function. Keywords nonlocal differential equation mild solution Hyers-Ulam stability. 1. Introduction Let H be a separable Hilbert space. Consider the following equation k t u t Au t f t u t t J 0 T . 1.1 where the unknown function u takes values in H the kernel k L1loc R A is an inbounded linear operator and f J H H is a Rgiven function. Here the t notation denotes the Laplace convolution i.e. k v t 0 k t s v s ds. In 1 authors introduced a result on the existence regularity and stability for mild solutions to 1.1 where f depends only on u and the initial condition is given by u 0 u0 . 1.2 Our goal in this paper is to consider the Hyers-Ulam stability for 1.1 . The Hyers-Ulam stability for functional equations was founded in 1940 by S.M Ulam in a talk at Wisconsin University see 2 and by D. H Hyers answer a year later for additive functions defined on Banach spaces see 3 . However the first result on the Hyers-Ulam stability of a differential equation was addressed by C.Alsina and R. Ger in 1998 see 4 . In this remarkable work they proved that if a differentiable function Received October 2 2020. Revised October 23 2020. Accepted October 30 2020. .
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.