Đang chuẩn bị liên kết để tải về tài liệu:
Cấu trúc sóng chức năng trong điện lý thuyết P4

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

We shall consider the scattering of a plane, linearly polarized monochromatic wave by a perfectly conducting prolate spheroid immersed in a homogeneous isotropic medium. Solution of the EM scattering by the oblate spheroid can be obtained by the transformations 5 --+ it and c --+ -ic. It is assumed that the surrounding medium is nonconducting and nonmagnetic. The geometry of the configuration is shown in Fig. 4.1, and the surface of the spheroid is given by | Spheroidal Wave Functions in Electromagnetic Theory Le-Wei Li Xiao-Kang Kang Mook-Seng Leong Copyright 2002 John Wiley Sons Inc. ISBNs 0-471-03170-4 Hardback 0-471-22157-0 Electronic _4 EM Scattering by a Conducting Spheroid 4.1 GEOMETRY OF THE PROBLEM We shall consider the scattering of a plane linearly polarized monochromatic wave by a perfectly conducting prolate spheroid immersed in a homogeneous isotropic medium. Solution of the EM scattering by the oblate spheroid can be obtained by the transformations and c ic. It is assumed that the surrounding medium is nonconducting and nonmagnetic. The geometry of the configuration is shown in Fig. 4.1 and the surface of the spheroid is given by c _ a _ a b 4.2 INCIDENT AND SCATTERED FIELDS Without loss of generality the direction of propagation of the linearly polarized monochromatic incident wave is assumed to be in the rr z-plane making an angle Oq with the z-axis as shown in Fig. 4.1. At an oblique incidence Oq 0 the polarized incident wave is resolved into two components the TE mode for which the electric vector of the incident wave vibrates perpendicularly to the x z-plane and the TM mode in which the electric vector lies in the x z-plane. Thus the plane-wave expressions for both modes are given by Ete ETEoye ikr 4.2a 89 90 EM SCATTERING BY A CONDUCTING SPHEROID Incident Wave 0o O X Fig. 4.1 Geometry of EM scattering by a conducting prolate spheroid. INCIDENT AND SCATTERED FIELDS 91 Etm Etmo x COS 6q z sin 0o e 4.2b where Eteo and Etmo are the amplitudes of the TE and TM fields respectively and k r fc xsin0o 4- zcos0o 4.3 with k being the wave number of the monochromatic radiation. Flammer 1 has obtained the plane-wave expansion in terms of prolate spheroidal wave functions as oo oo .n e- kr 2 52 52 Smn c cos0o SmnR l c cos in l 4.4 n mm 0 1Nmn -C where 7Vrnn c is the normalization constant given in Eq. 3.9 and em is the Neumann number 1 for m 0 and em 2 for m 0. For simplicity in what follows the .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.