Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Khoa Học Tự Nhiên
Toán học
Handbook of mathematics for engineers and scienteis61ts part
Đang chuẩn bị liên kết để tải về tài liệu:
Handbook of mathematics for engineers and scienteis61ts part
Thu Hương
55
7
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
Tham khảo tài liệu 'handbook of mathematics for engineers and scienteis61ts part', khoa học tự nhiên, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 388 Differential Geometry 9.2.1-3. Tangent line to surface. A straight line is said to be tangent to a surface if it is tangent to a curve lying in this surface. Suppose that a surface is given in vector form 9.2.1.1 and a curve lying on it is parametrized by the parameter t. Then to each parameter value there corresponds a point of the curve and the position of this point on the surface is specified by some values of the curvilinear coordinates u and v. Thus the curvilinear coordinates of points of a curve lying on a surface are functions of the parameter t. The system of equations u u t v v t 9.2.1.3 is called the intrinsic equations of the curve on the surface. The intrinsic equations completely characterize the curve if the vector equation of the surface is given since the substitution of 9.2.1.3 into 9.2.1.1 results in the equation r r u t v t which is called the parametric equation of the curve. The differential of the position vector is equal to dr r du r dv 9.2.1.4 9.2.1.5 where du u t t dt and dv v t t dt. The vectors r and r are called the coordinate vectors corresponding to the point whose curvilinear coordinates have been used in the computations. The coordinate vectors are tangent vectors to coordinate curves Fig. 9.21 . Figure 9.21. Coordinate vectors. 9.2. Theory of Surfaces 389 Formula 9.2.1.5 shows that the direction vector of any tangent line to a surface at a given point is a linear combination of the coordinate vectors corresponding to this point i.e. the tangent to a curve lies in the plane spanned by the vectors r and r at this point. The direction of the tangent to a curve on a surface at a point M is completely characterized by the ratio dv du of differentials taken along this curve. 9.2.1-4. Tangent plane and normal. If all possible curves are drawn on a surface through a given regular point M0 r0 M0 x0 y0 z0 M u0 v0 of the surface then their tangents at M0 lie in the same plane which is called the tangent plane to the surface at M0. The .
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.