Đang chuẩn bị liên kết để tải về tài liệu:
A textbook of Computer Based Numerical and Statiscal Techniques part 28

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

A textbook of Computer Based Numerical and Statiscal Techniques part 28. By joining statistical analysis with computer-based numerical methods, this book bridges the gap between theory and practice with software-based examples, flow charts, and applications. Designed for engineering students as well as practicing engineers and scientists, the book has numerous examples with in-text solutions. | 256 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES Example 9. Using Newton s divided difference formula prove that f x f 0 xAf -1 X 1 X A2 f -1 X 1 3 X 1 A3f -2 . Sol. Taking the arguments 0 -1 1 -2 . the Newton s divided difference formula is xA A2 A3 f X f 0 -1 f 0 X X 1 -1 1 f 0 X X 1 X 1 -1 1-2 f 0 . . 1 23 f x f 0 x A f -1 x x 1 A1 f -1 x x 1 x - 1 0A-1 1 f -2 . Now A f -1 f 0 - -ft-1 Af -1 0 - -1 ft f -1 i-pj Af 0 -Af -1 1 Af 0 -Af -1 1 A2f -1 A3 f -2 TTE A2 f -1 - A2 f -2 -1 0 1 f 2 1 - -2 _0 1 -1 02 v f 1 Ta2 f -1 A2 f -2 32 2 A3 f -2 A3 f -2 Q 9 ------ ---- and so on. 3 x 2 3 Substituting these values in 1 f x f 0 x Af -1 X 1 X A2f -1 X 1 X X - 1 A3f -2 . 2 3 Example 10. Using Newton s divided difference formula calculate the value of f 6 from the following data x 1 2 7 8 f x 1 5 5 4 INTERPOLATION WITH UNEQUAL INTERVAL 257 Sol. The divided difference table is x f x Af x A2f x A3f x 1 1 4 2 5 0 2 - 3 1 14 7 5 -1 1 - 6 8 4 Applying Newton s divided difference formula 2 A 1 A f x 1 x - 1 4 x - 1 x - 2 I - 3 x - 1 x - 2 x - 7 I I 2 A 1 f 6 1 20 5 4 I - 3 I 5 4 -1 I 14 6.2381 Example 11. Find the value of log10 656 using Newton s divided difference formula from the data given below x 654 658 659 661 log10x 2.8156 2.8182 2.8189 2.8202 Sol. Divided difference table for the given data is as x 105 f x 105 Af x 105 A2 f x 105 A3 f x 654 658 659 661 281560 281820 281890 282020 260 65 4 70 70 1 130 65 2 70_65 1 5 65 - 70 1.66 3 -1.66 -1 10.38 7 258 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES For the given argument the divided difference formula is f x y0 x - x0 Ayo x - Xo x - x1 A2y0 x - x0 x - x1 x - x2 A3y0 105 f x 281560 x - 654 65 x - 654 x - 658 .1 x - 654 x - 658 x - 659 0.38 On Substituting x 656 we get 105 f x 281560 2 x 65 -4 -4 -3 x 0.38 281560 130 - 4 4.56 105 f x 281690. 56 f x 2.8169056 log10 656 2.8169056 PROBLEM SET 5.3 1. By means of Newton s divided difference formula Find the value of f 8 and f 15 from the following table x 4 5 7 10 11 .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.