Đang chuẩn bị liên kết để tải về tài liệu:
PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

tài liệu hữu ích dành cho các bạn tham khảo để nâng cao củng cố kiến thức để chuẩn bi cho các kì thi sắp tới | Chương II Nguyên hàm và tích phân - Trần Phương BÀI 8. PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN I. CÔNG THỨC TÍCH PHÂN TỪNG PHÂN Giả sử u u x V v x có đạo hàm liên tục trong miền D khi đó ta có d uv udv vdu Jd uv Judv Jvdu uv Judv Jvdu J udv uv b b - J vdu J udv uv a - J vdu a a Nhận dạng Hàm số dưới dấu tích phân thường là tích 2 loại hàm số khác nhau Ý nghĩa Đưa 1 tích phân phức tạp về tích phân đơn giản hơn trong nhiều trường hợp việc sử dụng tích phân từng phần sẽ khử bớt hàm số dưới dấu tích phân và cuối cùng chỉ còn lại 1 loại hàm số dưới dấu tích phân Chú ý Cần phải chọn u dv sao cho du đơn giản và dễ tính được v đồng thời tích phân J vdu đơn giản hơn tích phân J udv II. CÁC DẠNG TÍCH PHÂN TỪNG PHÂN CƠ BẢN VÀ CÁCH CHỌN u dv 1. Dạng 1 sin ax b dx u P cos ax b dx x b e dx dv max b dx _ J P x x sin ax b dx cos ax b dx trong đó P x là đa thức ax b J__ e dx ax b m dx 2. Dạng 2 arcsin ax b dx dv arccos ax b dx arctg ax b dx arccotg ax b dx u ln ax b dx _ logm ax b dx J P x P x dx arcsin ax b arccos ax b arctg ax b trong đó P x là đa thức arc cotg ax b ln ax b logm ax b 3. Dạng 3 sin lnx dx r k cos lnx dx í- k cos lnx dx J x sin loga x dx cos loga x dx sin lnx cos lnx u 1 sin loga x J cos k gaX J dv xk dx _ eax bsin ax p dx eax b cos ax p dx max bsin ax p dx max b cos ax p dx u 1 _ dv ax b e __ax b m sin ax p dx cos ax p dx 210 Bài 8. Phương pháp tích phân từng phần III. CÁC BÀI TẬP MÃU MINH HỌA 1. Dạng 1 JP x sin ax b cos ax b eax b max b dx A1 J x3cos x dx. . lu x3 Cách làm chậm Đặt dv cos x dx du 3x2 v sin x dx . Khi đó ta có A1 x3 sin x - 3J x2 sin x dx. Đặt _ 2 x dv sin x dx du 2x dx I . Khi đó ta có v -cosx x3 sinx - 3I - x2 cos x 2Jx cos x dx j. Đặt u x dv cos x dx du dx v sin x A1 u A1 x3 sinx 3x2 cosx- 6 xsinx- Jsinxdx x3 sin x 3x2 cosx - 6 xsinx cosx c Cách làm nhanh Biến đổi về dạng JP x L x dx JP x du A1 J x3 cosxdx J x3d sinx x3 sinx - J sinxd x3 x3 sinx - 3J x2 sinxdx x3 sinx 3Jx2d cosx x3 sinx x2 cosx - Jcosxd x2 j x3 sinx 3x2 cosx - 6Jxcosxdx x3 sinx 3x2 .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.