Đang chuẩn bị liên kết để tải về tài liệu:
Ôn thi tích phân

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'ôn thi tích phân', tài liệu phổ thông, toán học phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Tran Sĩ Tung Tích phan Nhắc lại Giới hạn - Đạo hàm - Vi phân 1. Cắc giới hàn đắc biệt a sinx lim 1 x 0 x Hê quà x lim 1 x 0 sin x sinu x lim 1 u x 0 u x u x lim 1 u x 0 sinu x x L. 1Y b lim I 1 I ê x e R x è x0 1 Hê quà lim 1 x x ê. x 0 ln 1 x lim - 1 x 0 x 1 êx -1 _ lim ----- 1 x 0 x 2. Bắng đạo hàm cắc hàm sOO sớ cấp cớ bắn và cắc hê quà c 0 c là hàng so xa ax ua aua-1u 1 k- è x 0 x2 1 0 u è u 0 u2 c x S-ị. 2Vx G ĩ xY 2 Vu êx ex êu u .êu ax ax.lna au au.lna . u lnlxl 1 x ln u u u loga lxl 1 x.lna loga lub u u.lna sinx cosx sinu u .cosu z. X. 1 . 2 tgx 2 1 tg x cos x tgu 22 1 tg u .u cos u -1 2 cotgx 2 1 cotgx sin x -u . 2 X . cotgu . - 1 cotgu .u sin u 3. Vi phàn Cho hàm sô y f x xác định trên khoảng a b và co đạo hàm tại x e a b . Cho sô gia Dx tại x sao cho x Dx e ạ b . Ta goi tích y .Dx hoác f x .Dx là vi phàn cua hàm so y f x tai x ky hiêu là dy hoặc df x . dy y .Dx hoặc df x f x .Dx Ap dung định nghĩa trên vào hàm so y x thì dx x Dx 1.Dx Dx Vì vậy ta co dy y dx hoặc df x f x dx Trang 1 Tích phan Tran Sĩ Tung NGUYEN HÀM VÀ TÍCH PHÀN g h ỉ Bai 1 NGUYEN -HAM Hg 1. Định nghĩa Hàm sô F x được gọi là nguyên hàm cua hàm sô f x trên khoảng a b nếu mọi x thuộc à b tà cô F x f x . Nếu thày cho khoàng à b là đoạn à b thì phài cô thêm F à f x và F b- f b 2. Định lý Nếu F x là một nguyên hàm củà hàm so f x trên khoàng à b thì à Vôi moi hàng so C F x C cung là mOt nguyên hàm cuà hàm so f x trên khoàng đo. b Ngược lài moi nguyên hàm cuà hàm so f x trên khoàng à b đêu co thể viết dượi dàng F x C vôi C là mOt hàng so. Ngưôi tà ky hiêu ho tất cà càc nguyên hàm cuà hàm so f x là òf x dx. Do đo viết ò f x dx F x C Bo đề Nếu F x 0 trên khoàng à b thì F x khong đoi trên khoàng đo. 3. Cac tính chất của nguyên ham ò f x dx f x ò àf x dx àj f x dx à 0 f x g x dx ò f x dx ò g x dx òf t dt F t C Jf u x u x dx F u x C F u C u u x 4. Sự1 ton tai nguyên ham Đinh lý Moi hàm so f x liên tuc trên đoàn à b đêu co nguyên hàm trên đoàn đo. Trang 2 Tran Sĩ Tung Tích phan BANG CÁC NGUYÊN HAM .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.