Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Invariant subspaces of compact perturbations of linear operators in Banach spaces "

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí Journal of Operator Theory đề tài: Subspaces bất biến của các nhiễu loạn nhỏ gọn của các nhà khai thác tuyến tính trong không gian Banach. | Copyright by INCREST 1979 J. OPERATOR THEORY 1 1979 225 - 260 INVARIANT SUBSPACES OF COMPACT PERTURBATIONS OF LINEAR OPERATORS IN BANACH SPACES LÁSZLÓ ZSID0 In 22 it was proved that if T is a self-adjoint operator on a complex Hilbert space H and K belongs to some Schatten-von Neumann ideal p of compact operators on H 1 p oo then T K has nontrivial invariant subspaces. This statement has been extended in 15 for T self-adjoint and K in the larger Macaev ideal of compact operators and in 12 for T normal the spectrum ff T of T contained in a simple c2 Jordan curve and K 6 ểa. The proofs of the above results are straightforward whenever a T K ơ T 0 so one may consider without loss of generality only the case a T K c a T . For T self-adjoint respectively unitary and 1 p oo with ơ T K . R respectively a T K on the unit circle I. Colojoara and c. Foias proved in 4 that T K is d-scalar for some admissible function algebra ã on ơ T K in particular T K is decomposable. This result is extended by M. Radjabalipour and H. Radjavi in 18 as follows if ơ T is contained in a closed c2 Jordan curve r 1 1 - 0-1 CO S1T d i r for Ầ ị r and ơ T K cz r then T K is decomposable. For a complex Banach space X the operator ideals analogous to p and may be defined in terms of the approximation numbers see 17 Section 8.1 . The main difficulty in extending the above results for operators on X consists in the absence of an appropriate determinant theory for operators on Banach spaces which would enable the estimate of the norm of the resolvent of T K in terms of the norm of the resolvent of T and the approximation numbers of K. The main result of this paper Theorem 3.1 consists just in a resolvent estimate of the above type. We reduce the general resolvent estimate problem to a finite-dimensional Hilbert space problem where the determinant theory is available. Once a convenient resolvent estimate is obtained for T K its decomposability follows by general criteria like 14 Th. 6 12 Th. 2.2 19 Th.

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.