Đang chuẩn bị liên kết để tải về tài liệu:
Advanced Mathematical Methods for Scientists and Engineers Episode 3 Part 6

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'advanced mathematical methods for scientists and engineers episode 3 part 6', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | We make the substitution u eA- A2 1 0 A i A set of linearly independent solutions for u is e e . Since e A cos Ẹ 2 an sin Ẹ 12 another linearly independent set of solutions is cos sin . The general solution for y x is y x Cl cos ln x c2 sln ln x . Solution 17.12 Consider the differential equation x2y 2xy 2y 0. With the substitution y xx this equation becomes A A 1 2A 2 0 A2 3A 2 0 A 1 2. The general solution is then y C1x c2x2. 974 Solution 17.13 We note that xy v 1V 0 x is an Euler equation. The substitution y xx yields A3 - 3A2 2A A2 - A A 0 A3 - 2A2 2A 0. The three roots of this algebraic equation are A 0 A 1 i A 1 1 The corresponding solutions to the differential equation are y x0 y x1 1 y x1-1 y 1 y x e1 ln x y x e-1 ln x We can write the general solution as y c1 c2x cos ln x c3 sin ln x . Solution 17.14 We substitute y xx into the differential equation. x2y 2a 1 xy by 0 A A - 1 2a 1 A b 0 A2 2aA b 0 A -a v a2 - b .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.