Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "The Number of Solutions of X 2 = 0 in Triangular Matrices Over GF"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: The Number of Solutions of X 2 = 0 in Triangular Matrices Over GF . | The Number of Solutions of X2 0 in Triangular Matrices Over GF q Shalosh B. EKHAD1 and Doron ZEILBERGER1 Abstract We prove an explicit formula for the number of n X n upper triangular matrices over GF q whose square is the zero matrix. This formula was recently conjectured by Sasha Kirillov and Anna Melnikov KM . Theorem. The number of n X n upper-triangular matrices over GF q the Snite held with q elements whose square is the zero matrix is given by the polynomial Cn q where C2n q j 2n _ n - 3j 2n n 3j 1 qn2-3j2-j C2n 1 q j 2n A _ i 2n 1 n 3 j n 3 j 1 qn2 n-3j2-2j Proof. In K it was shown that the quantity of interest is given by the polynomial An q A r 0 An q where the polynomials Arn q are defined recursively by An 1 q qr 1 An 1 q qn-r qr Affiq A q 1. Sasha For any Laurent formal power series P w let CTw P w denote the coefficient of w . Recall that the q-binomial coefficients are defined by m _ 1 qm 1 qm-1 1 qm-n 1 n q 1 q 1 q2 1 qn Carl whenever 0 n m and 0 otherwise. Lemma 1. we have Arn q CTw 1 w 1 w nqr n-r wr lb 1 V i 0 i 1 i 2-i n-2r i n 2r wi Anna Proof. Call the right side of Eq. Anna sn q . Since sn 1 q 1 the lemma would follow by induction if we could show that sn 1 q qr 1 sn 1 q qn-r qr sn q 0. Sasha 1 Department of Mathematics Temple University Philadelphia PA 19122 USA. ekhad zeilberg @math.temple.edu http www.math.temple.edu fekhad zeilberg ftp ftp.math.temple.edu pub ekhad zeilberg . Supported in part by the NSF. Nov. 28 1995. 1 THE ELECTRONIC JOURNAL OF COMBINATORICS 3 1996 R2 2 Using the linearity of CTw manipulating the series using the dehnition Carl of the q binomial coefficients and simplifying brings the left side of Sasha to be CTw n q w where n is zero except when n is odd and r n 1 2 in which case it is a monomial in q times 1-w N I1w and applying CTw kills it all the same thanks to the symmetry of the Chu-Pascal triangle. Summing the expression proved for An q yields that An q CTw 1 w 1 w n T T 1 iqr n-r - i 1 i 2-i n-2r ii n 2 i wi-r

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.