Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "An Inequality Related to Vizing’s Conjecture"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học trên tạp chí toán học quốc tế đề tài: An Inequality Related to Vizing’s Conjecture. | An Inequality Related to Vizing s Conjecture W. Edwin Clark and Stephen Suen Department of Mathematics University of South Florida Tampa FL 33620-5700 USA eclark@math.usf.edu suen@math.usf.edu Submitted November 29 1999 Accepted May 24 2000 Abstract Let y G denote the domination number of a graph G and let G H denote the Cartesian product of graphs G and H. We prove that y G y H 2y G H for all simple graphs G and H. 2000 Mathematics Subject Classifications Primary 05C69 Secondary 05C35 We use V G E G Y G respectively to denote the vertex set edge set and domination number of the simple graph G. For a pair of graphs G and H the Cartesian product G H of G and H is the graph with vertex set V G X V H and where two vertices are adjacent if and only if they are equal in one coordinate and adjacent in the other. In 1963 V. G. Vizing 2 conjectured that for any graphs G and H Y G y H Y G H . 1 The reader is referred to Hartnell and Rall 1 for a summary of recent progress on Vizing s conjecture. We note that there are graphs G and H for which equality holds in 1 . However it was previously unknown 1 whether there exists a constant c such that y G y H c y G H . We shall show in this note that Y G y H 2 y G H . For S c V G we let NG S denote the set of vertices in V G that are in S or adjacent to a vertex in S i.e. the set of vertices in V G dominated by vertices in S. 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 7 2000 N4 2 Theorem 1 For any graphs G and H iG H 2y G H . Proof. Let D be a dominating set of G H. It is sufficient to show that y G y H 2 D . 2 Let u1 u2 . uY G be a dominating set of G. Form a partition Hl n2 . nY G of V G so that for all i i ui 2 n and ii u 2 ni implies u u or u is adjacent to ui. This partition of V G induces a partition D1 D2 . DY G of D where Di Hi X V H n D. Let Pi be the projection of Di onto H. That is Pi v u v 2 Di for some u 2 ni . Observe that for any i Pi u V H NH Pi is a dominating set of H and hence the number of vertices in V H not .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.