Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "A note on major sequences and external activity in trees"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: A note on major sequences and external activity in trees. | A note on major sequences and external activity in trees Janet S. Beissinger Institute for Mathematics and Science Education The University of Illinois at Chicago M C 250 950 S. Halsted Street Chicago IL 60607-7019 Beissing@uic.edu and Uri N. Peled Dept. of Mathematics Statistics and Computer Science The University of Illinois at Chicago M C 249 851 S. Morgan Street Chicago IL 60607-7045 uripeled@uic.edu Submitted September 20 1996 Accepted October 31 1996. Abstract A bijection is given from major sequences of length n a variant of parking functions to trees on 0 . ng that maps a sequence with sum 1 k to a tree with external activity k. Key Words Major sequence external activity parking function bijection Mathematical Reviews Subject Numbers Primary 05A19 Secondary 05A15 05C05 05C30 THE ELECTRONIC .JOURNAL OF COMBINATORICS 4 no. 2 1997 R4 2 We present a bijection from major seqeunces a variant of parking funtions of length n to trees on 0 . ng that takes area to external activity. Our main tool is a decomposition of major sequences due to Kreweras 6 . An integer sequence S s1 . sn is called a major sequence of length n 6 if its non-decreasing rearrangement z1 . zn satisfies zi i for all 1 i n and zn n. Another way to view z1 . zn is as a lattice path from 0 0 to n n that never drops below the main diagonal. In Figure 1 the top lattice path represents the nondecreasing rearrangement of the major sequence 7 8 8 3 3 5 3 7 and the bottom represents the identity 1 2 3 4 5 6 7 8 . 8 7 6 5 4 3 2 1 0 012345678 Figure 1 The nondecreasing rearrangement of the major sequence 7 8 8 3 3 5 3 7 with length 8 and area 8. We note that s1 . sn is a major sequence iff n s1 . n sn is a parking function as defined in Stanley 7 8 i.e. a sequence of n integers between 0 and n 1 at most i of which are n i for all 1 i n. The area of the major sequence S s1 . sn is defined as X _ n 1 a S 2_ si 2 . i 1 THE ELECTRONIC .JOURNAL OF COMBINATORICS 4 no. 2 1997 R4 3 It is non-negative and is the .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.