Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: " A Bijective Proof of Garsia’s q-Lagrange Inversion Theorem"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học hay nhất của tạp chí toán học quốc tế đề tài: A Bijective Proof of Garsia’s q-Lagrange Inversion Theorem. | A Bijective Proof of Garsia s q-Lagrange Inversion Theorem Dan W. Singer Tiernan Communications 5751 Copley Drive San Diego CA 92111 dsinger@tiernan.com Submitted March 4 1997 Accepted April 25 1998 Abstract A q-Lagrange inversion theorem due to A. M. Garsia is proved by means of two sign-reversing weight-preserving involutions on Catalan trees. 1 Introduction Let F u be a formal power series with F 0 0 F0 0 0 delta series . Then F u has an inverse f u which satishes 1 p u k gn f u n uk n k and 1 f u k un F u n uk n k for all k 1 where un means extract the coefficient of un. The coefficients of f u n may be expressed in terms of the coefficients of F u by means of the Lagrange inversion formula f u n uk unF 0 u F u k 1 u 1 AMS Subject Classification 05E99 primary 05A17 secondary Keywords q-Lagrange inversion Catalan trees THE ELECTRONIC JOURNAL OF COMBINATORICS 5 1997 R26 2 The q-Lagrange inversion problem may be stated as follows given a delta series F u and a sequence of formal power series Fk u g which is a q-analogue of F u k find fk u such that 1 X Fk u lu fn u uk 1.1 n k and 1 X fk u un Fn u uk 1.2 n k for all k 1. If fk u satisfies equations 1.1 and 1.2 then fk u is a q-analogue of f u k for each k where f u F-1 u . We say that Fk u g and fk u are inverse sequences. There are several solutions to the q-Lagrange inversion problem appearing in the literature see for example Andrews 2 Garsia 7 Garsia and Remmel 9 Gessel 10 Gessel and Stanton 11 12 Hofbauer 13 Krattenthaler 15 Singer 17 18 . Singer 17 proved an inversion theorem based on a generalization of Garsia s operator techniques which unifies and extends the q-Lagrange inversion theorems of Garsia 7 and Garsia-Remmel 9 . Garsia Gessel and Stanton and Singer have shown that Rogers-Ramanujan type identities may be derived by means of q-Lagrange inversion. Several authors have given quite distinct bijective proofs of q-series identities many of which may be interpreted as statements about partitions - see .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.