Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Domination, packing and excluded minors"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học ngành toán học tạp chí toán học quốc tế đề tài: Domination, packing and excluded minors | Domination packing and excluded minors Thomas Bohme i Institut fur Mathematik Technische Universitat Ilmenau Ilmenau Germany Bojan Mohar Department of Mathematics University of Ljubljana Ljubljana Slovenia Submitted Feb 6 2003 Accepted Aug 22 2003 Published Sep 8 2003 MR Subject Classifications 05C69 05C83 Abstract Let Y G be the domination number of a graph G and let ak G be the maximum number of vertices in G no two of which are at distance k in G. It is easy to see that Y G a2 G . In this note it is proved that Y G is bounded from above by a linear function in a2 G if G has no large complete bipartite graph minors. Extensions to other parameters ak G are also derived. 1 Introduction and main results Let G be a finite undirected graph. A graph H is a minor of G if it can be obtained from a subgraph of G by contracting edges. The distance distc x y in G of two vertices x y E V G is the length of a shortest x y -path in G. The distance of a vertex x from a set A c V G is min distc x a I a E A . For a set A c V G G A denotes the subgraph of G induced by A. If k is a nonnegative integer we denote by Nk A the set of all vertices of G which are at distance k from A. The set A is a k-dominating set in G if Nk A V G . The cardinality of a smallest k-dominating set of G is denoted by Yk G . A vertex set X0 c V G is an ak-set if no two vertices in X0 are at distance k in G. Let ak G denote the cardinality of a largest ak-set of G. Observe that Y G Y1 G and a G a1 G are the usual domination number and the independence or stability number of G. We refer to 3 for further details on domination in graphs. Supported by SLO-German grant SVN 99 003. E-mail address tboehme@theoinf.tu-ilmenau.de Supported in part by the Ministry of Education Science and Sport of Slovenia Research Project J1-0502-0101-00 and by SLO-German grant SVN 99 003. E-mail address bojan.mohar@uni-lj .si THE ELECTRONIC JOURNAL OF COMBINATORICS 10 2003 N9 1 It is clear that Yk G a2k G . On the other hand for any

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.