Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Optimal Penney Ante Strategy via Correlation Polynomial Identities"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Optimal Penney Ante Strategy via Correlation Polynomial Identities. | Optimal Penney Ante Strategy via Correlation Polynomial Identities Daniel Felix Department of Mathematics University of California at San Diego La Jolla CA 92093-0112 dfelix@math.ucsd.edu Submitted Oct 19 2004 Accepted Mar 30 2006 Published Apr 4 2006 Mathematics Subject Classifications 60C05 05A19 Abstract In the game of Penney Ante two players take turns publicly selecting two distinct words of length n using letters from an alphabet Q of size q. They roll a fair q sided die having sides labelled with the elements of Q until the last n tosses agree with one player s word and that player is declared the winner. For n 3 the second player has a strategy which guarantees strictly better than even odds. Guibas and Odlyzko have shown that the last n 1 letters of the second player s optimal word agree with the initial n 1 letters of the first player s word. We offer a new proof of this result when q 3 using correlation polynomial identities and we complete the description of the second player s best strategy by characterizing the optimal leading letter. We also give a new proof of their conjecture that for q 2 this optimal strategy is unique and we provide a generalization of this result to higher q. 1 Introduction We are interested in a generalization of the coin flipping game Penney Ante invented in 1969 by Walter Penney. In its original version two players take turns publicly selecting distinct binary sequences of a fixed length n. They flip a fair coin with sides labelled 0 and 1 until the last n results match one player s sequence and that player is declared the winner. We study a version of this game in which the coin is abandoned in favor of a fair q sided die. The faces of our die are labelled with the elements of a set Q of size q. We call Q an alphabet and its elements letters. We will refer to a finite string of letters as a word. Penney Ante s most striking feature is the nontransitivity of its beating relation among words of fixed length n 3 where we say .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.