Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "The minimum size of complete caps in (Z/nZ)2"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: The minimum size of complete caps in (Z/nZ)2. | The minimum size of complete caps in Z nZ 2 Jack Huizenga Department of Mathematics University of Chicago Chicago IL 60637 USA huizenga@uchicago.edu Submitted Oct 19 2005 Accepted Jul 12 2006 Published Jul 28 2006 Mathematics Subject Classification 51E22 Abstract A line in Z nZ 2 is any translate of a cyclic subgroup of order n. A subset X c Z nZ 2 is a cap if no three of its points are collinear and X is complete if it is not properly contained in another cap. We determine bounds on T n the minimum size of a complete cap in Z nZ 2. The other natural extremal question of determining the maximum size of a cap in Z nZ 2 is considered in 8 . These questions are closely related to well-studied questions in finite affine and projective geometry. If p is the smallest prime divisor of n we prove that max 4 p2p I T n max 4 p 1 . We conclude the paper with a large number of open problems in this area. 1 Introduction A k-cap in AG n q affine n-space over F is a subset X c AG n q of size k no three of whose points are collinear. When a k-cap is not contained in any k 1 -cap it is said to be complete. The same definitions may be made for PG n q projective n-space over F . There are two very natural extremal questions in the study of caps. First what is the maximum size of a cap in AG n q or PG n q This question is of great importance in coding theory and relates to the existence of certain q-ary codes. A nice survey of this question is provided in 4 . On the other hand we could try to determine the minimum number of points in a complete cap. This question was originally posed by B. Segre 16 17 in the late 1950 s in the special case of finite projective planes of order q. Most work in this field has concerned the two-dimensional case so we will restrict our attention to n 2. An essentially trivial lower bound for the minimum number of points in a complete cap in PG 2 q is given THE ELECTRONIC JOURNAL OF COMBINATORICS 13 2006 R58 1 by y 2q and the best known lower bound to date

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.