Đang chuẩn bị liên kết để tải về tài liệu:
Báo cáo toán học: "Evaluating a Weighted Graph Polynomial for Graphs of Bounded Tree-Width"

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tuyển tập các báo cáo nghiên cứu khoa học về toán học trên tạp chí toán học quốc tế đề tài: Evaluating a Weighted Graph Polynomial for Graphs of Bounded Tree-Width. | Evaluating a Weighted Graph Polynomial for Graphs of Bounded Tree-Width S. D. Noble Department of Mathematical Sciences Brunel University Kingston Lane Uxbridge UB8 3PH U.K. steven.noble@brunel.ac.uk Submitted Oct 30 2006 Accepted May 18 2009 Published May 29 2009 Mathematics Subject Classification 05C85 05C15 68R10 Abstract We show that for any k there is a polynomial time algorithm to evaluate the weighted graph polynomial U of any graph with tree-width at most k at any point. For a graph with n vertices the algorithm requires O akn2k 3 arithmetical operations where ak depends only on k. 1 Introduction Motivated by a series of papers 9 10 11 the weighted graph polynomial U was introduced in 22 . Chmutov Duzhin and Lando 9 10 11 introduce a graph polynomial derived from Vassiliev invariants of knots and note that this polynomial does not include the Tutte polynomial as a special case. With a slight generalisation of their definition we obtain the weighted graph polynomial U that does include the Tutte polynomial. The attraction of U is that it contains many other graph invariants as specialisations for instance the 2-polymatroid rank generating function of Oxley and Whittle 23 and as a consequence the matching polynomial the stable set polynomial 13 and the symmetric function generalisation of the chromatic polynomial 27 . Note however that there are non-isomorphic graphs with the same U polynomial. This is a corollary of a result of Sarmiento 26 showing that the coefficients of U and the polychromate determine one another. It remains an open problem to determine whether or not there are two nonisomorphic trees with the same U polynomial. We introduce U in Section 2 and review some of these results in more detail. The notion of tree-width was introduced by Robertson and Seymour as a key tool in their work on the graph minors project 24 25 . An equivalent notion studied extensively by Arnborg and Proskurowski see for instance 3 4 is that of a partial k-tree. THE .

TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.