Đang chuẩn bị liên kết để tải về tài liệu:
MODELLING OF MECHANICAL SYSTEM VOLUME 2 Episode 7

Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG

Tham khảo tài liệu 'modelling of mechanical system volume 2 episode 7', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 218 Structural elements 4.3.1 Equations of motion projected onto a modal basis Let us consider the forced dynamical problem governed by the linear partial differential equations of the general type K XX C XX M XX F e r t I.C. and B.C. 4.35 I.C. stands for the initial conditions and B .C. for the conservative boundary conditions. The stiffness damping and mass operators K C M can depend on the vector position r in the Euclidean space. To the forced problem governed by 4.35 we associate the modal problem 4.36 which satisfies the same boundary conditions K r - rn2M r y 0 B .C. 4.36 solutions of which are defining the following modal quantities ỹn Kn Mn n 1 2 3 . 4.37 As in the case of discrete systems the mode shapes can be used to determine an orthonormal basis with respect to the stiffness and mass operators in which the solution X r t of 4.35 can be expanded as the modal series cc XX r t 2 qn t f n r 4.38 where the time functions qn t n 1 2 . termed modal displacements are the components of the displacement field X r t in the modal coordinate system. Formal proof of such a statement is not straightforward and is omitted as already mentioned in the introduction. As the dimension of the functional vector space is infinite a delicate problem of convergence and space completeness arises. Substitution of 4.38 into the equation of motion 4.35 leads to K Vn r qn t C Vn r q_n t M Vn r qn t F e r t n 1 I .C. 4.39 The system of equations 4.39 is projected on the k-th mode shape f k by using the scalar product 1.43 and the orthogonality properties 4.2 . The transformation Modal analysis methods 219 results into the following ordinary differential equation Kkqk Cknịn Mkqk Qk t 4 40 where Ckn P C P V and Q P F e V The subscript V accounts for the space integration domain involved in the scalar product. Q t k 1 2 . termed modal forces are the components of the external force field F e r t as expressed in the modal coordinate system. As already discussed in AXI 04 Chapter 7 the .

Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.