Báo cáo tài liệu vi phạm
Giới thiệu
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Sức khỏe - Y tế
Văn bản luật
Nông Lâm Ngư
Kỹ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
THỊ TRƯỜNG NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Tìm
Danh mục
Kinh doanh - Marketing
Kinh tế quản lý
Biểu mẫu - Văn bản
Tài chính - Ngân hàng
Công nghệ thông tin
Tiếng anh ngoại ngữ
Kĩ thuật công nghệ
Khoa học tự nhiên
Khoa học xã hội
Văn hóa nghệ thuật
Y tế sức khỏe
Văn bản luật
Nông lâm ngư
Kĩ năng mềm
Luận văn - Báo cáo
Giải trí - Thư giãn
Tài liệu phổ thông
Văn mẫu
NGÀNH HÀNG
NÔNG NGHIỆP, THỰC PHẨM
Gạo
Rau hoa quả
Nông sản khác
Sữa và sản phẩm
Thịt và sản phẩm
Dầu thực vật
Thủy sản
Thức ăn chăn nuôi, vật tư nông nghiệp
CÔNG NGHIỆP
Dệt may
Dược phẩm, Thiết bị y tế
Máy móc, thiết bị, phụ tùng
Nhựa - Hóa chất
Phân bón
Sản phẩm gỗ, Hàng thủ công mỹ nghệ
Sắt, thép
Ô tô và linh kiện
Xăng dầu
DỊCH VỤ
Logistics
Tài chính-Ngân hàng
NGHIÊN CỨU THỊ TRƯỜNG
Hoa Kỳ
Nhật Bản
Trung Quốc
Hàn Quốc
Châu Âu
ASEAN
BẢN TIN
Bản tin Thị trường hàng ngày
Bản tin Thị trường và dự báo tháng
Bản tin Thị trường giá cả vật tư
Thông tin
Tài liệu Xanh là gì
Điều khoản sử dụng
Chính sách bảo mật
0
Trang chủ
Công Nghệ Thông Tin
Kỹ thuật lập trình
handbook of multisensor data fusion phần 5
Đang chuẩn bị liên kết để tải về tài liệu:
handbook of multisensor data fusion phần 5
Minh Ðạt
64
3
pdf
Không đóng trình duyệt đến khi xuất hiện nút TẢI XUỐNG
Tải xuống
hiện nay nhấn mạnh đến đặc tính của cảnh thay đổi động theo dõi, cũng như khả năng thời gian phát triển quá trình phân tích có thể liên quan đến sự tương tác giữa một mạng lưới của các quá trình phản ứng tổng hợp phân phối. | FIGURE 10.1 Detection likelihood function for a sensor at 70 0 . measurements are linear and hopefully the measurement errors are Gaussian. In combining all this information into one tracker the approximations and the use of disparate coordinate systems become more problematic and dubious. In contrast the use of likelihood functions to incorporate all this information and any other information that can be put into the form of a likelihood function is quite straightforward no matter how disparate the sensors or their measurement spaces. Section 10.2.4.1 provides a simple example of this process involving a line of bearing measurement and a detection. 10.2.4.1 Line of Bearing Plus Detection Likelihood Functions Suppose that there is a sensor located in the plane at 70 0 and that it has produced a detection. For this sensor the probability of detection is a function Pd r of the range r from the sensor. Take the case of an underwater sensor such as an array of acoustic hydrophones and a situation where the propagation conditions produce convergence zones of high detection performance that alternate with ranges of poor detection performance. The observation measurement in this case is Y 1 for detection and 0 for no detection. The likelihood function for detection is Ld 1 x Pd r x where r x is the range from the state x to the sensor. Figure 10.1 shows the likelihood function for this observation. Suppose that in addition to the detection there is a bearing measurement of 135 degrees measured counter-clockwise from the x1 axis with a Gaussian measurement error having mean 0 and standard deviation 15 degrees. Figure 10.2 shows the likelihood function for this observation. Notice that although the measurement error is Gaussian in bearing it does not produce a Gaussian likelihood function on the target state space. Furthermore this likelihood function would integrate to infinity over the whole state space. The information from these two likelihood functions is combined by .
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.