Adaptive Control Design and Analysis Part 3

Tham khảo tài liệu 'adaptive control design and analysis part 3', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 62 Chapter 2 Systems Theory asymptotically stable . In this section we present some fundamental tools for analyzing the stability of adaptive control systems the Bellman-Gronwall lemma for feedback structure equivalence a small-gain lemma for feedback stability some operator stability properties for system analysis and the Lefschetz-Kalman-Yakubovich lemma for passivity and system matrices . Bellman-Gronwall Lemma There are different versions of the Bellman-Gronwall lemma 78 151 426 . Two of them are presented here with proofs which are useful in stability analysis for different adaptive control schemes in the next chapters. Lemma Let f t f g t and fc t be continuous and g t 0 k t 0 Vt to o nd for some to 0. If a continuous function z t satisfies z t f t g t i k zfr dr Vi to J to then z t f t g t f k r f r e k dr Vi t0. Jto Proof Introducing w t fỊ0 k r z r dr and using and the fact that A t 0 we obtain w t fc t .z t fc t t Defining A t w t e ftok s deri and using we have à í w t e ỉ ok dơ - w í fc í ỡ í e- cr s T dí7 k t f i e k ơìdơ. Since A to cư to 0 from it follows that A t r fc r r e_ fc ơ ẩ r d dr. to With the definition of A t leads to w t A t e-f o r ff r dơ r k T f r eỉ k -ữ dữ dr J to which with for g t 0 and the definition of w t implies . V Input-Output Stability 63 Figure Feedback system diagram of Bellman-Gronwall lemma. A control system block diagram can be used to illustrate Lemma as shown in Figure where g t e R and k t e R from which we have y t d t gự w t0 k r y r dr f i ỔƠ i k r y r dr Jto for t d t g t w tũ . From similar to we have 11 01 1 01 lỡ 0I r k f i t dr. 0 Lemma Ifk t is continuous and k t 0 Vi to 0 and a continuous function z t satisfies z t c f k r z r dT Vt to J to where c is a constant then z t ce- ofc T dT t t0. Proof Introducing w t c fto kfr z r dr and A t w t e k dơwith A to w to c from we derive w t fc

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.