Finite Element Analysis - Thermomechanics of Solids Part 2

Tham khảo tài liệu 'finite element analysis - thermomechanics of solids part 2', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 2 Mathematical Foundations Tensors TENSORS We now consider two n X 1 vectors v and w and an n X n matrix A such that v Aw. We now make the important assumption that the underlying information in this relation is preserved under rotation. In particular simple manipulation furnishes that v Qv QAw M QAQTQw QAQTw . The square matrix A is now called a second-order tensor if and only if A QAQT. Let A and B be second-order n X n tensors. The manipulations that follow demonstrate that AT A B AB and A 1 are also tensors. At QAQt t QtTAtQt A B QAQt QBQt QABQt A B A B QAQt qbqt Q A B Qt A -1 QAQt -1 qt-1a-1q-1 QA-1Qt . 25 2003 by CRC CRC Press LLC 26 Finite Element Analysis Thermomechanics of Solids Let x denote an n X 1 vector. The outer product xxT is a second-order tensor since xxT x x T Qx Qx T Q xxT Qt Next d20 dxTHdx H fdi f x v dx J v dx J However dx tH dx Q dx TH Q dx dxT QTH Q dx from which we conclude that the Hessian H is a second-order tensor. Finally let u be a vector-valued function of x. Then du dt dx from which duT dxT fdu i vox J and also duT dxTf i uT. vdx J We conclude that f du i T vdx J duT dxT Furthermore if du is a vector generated from du by rotation in the opposite sense from the coordinate axes then du Qdu and dx Qdx . Hence Q is a tensor. Also since du 1 - dx it is apparent that dx 1 Q f QT dx dx from which we conclude that 1 is a tensor. We can similarly show that I and 0 are tensors. x 2003 by CRC CRC Press LLC Mathematical Foundations Tensors 27 DIVERGENCE CURL AND LAPLACIAN OF A TENSoR Suppose A is a tensor and b is an arbitrary spatially constant vector of compatible dimension. The divergence and curl of a vector have already been defined. For later purposes we need to extend the definition of the divergence and the curl to A. Divergence Recall the divergence theorem J cTndS J VTcdV. Let c ATb in which b is an arbitrary constant vector. Now bT J AndS Jvt ATb dV J VtAt dVb bT J .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.