Finite Element Analysis - Thermomechanics of Solids Part 3

Tham khảo tài liệu 'finite element analysis - thermomechanics of solids part 3', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 3 Introduction to Variational and Numerical Methods INTRODUCTION TO VARIATIONAL METHODS Let u x be a vector-valued function of position vector x and consider a vectorvalued function F u x u x x in which u x du dx. Furthermore let v x be a function such that v x 0 when u x 0 and v x 0 when u x 0 but which is otherwise arbitrary. The differential dF measures how much F changes if x changes. The variation dF measures how much F changes if u and u change at fixed x. Following Ewing we introduce the vector-valued function ộ e F as follows Ewing 1985 o e F F u x ev x u x ev x x - F u x u x x The variation dF is defined by __ f dod dF el I I de J e v 7 with x fixed. Elementary manipulation demonstrates that dF dFev trf ev l du vdu J in which 4 ev ev j. If F u then dF du ev. If F u then dF d u 3m ev . This suggests the form dF -dF du trf du i. du vdu J The variational operator exhibits five important properties 1. d . commutes with linear differential operators and integrals. For example if S denotes a prescribed contour of integration d dS d j dS 43 2003 by CRC CRC Press LLC 44 Finite Element Analysis Thermomechanics of Solids 2. 8 f vanishes when its argument f is prescribed. 3. 8 . satisfies the same operational rules as d . . For example if the scalars q and r are both subject to variation then 8 qr q8 r 8 q r. 4. Iff is a prescribed function of scalar x and if u x is subject to variation then 8 fu f8u. 5. Other than for number 2 the variation is arbitrary. For example for two vectors v and w vTd w 0 implies that v and w are orthogonal to each other. However vT8w implies that v 0 since only the zero vector can be orthogonal to an arbitrary vector. As a simple example Figure depicts a rod of length L cross-sectional area A and elastic modulus E. At x 0 the rod is built in while at x L the tensile force P is applied. Inertia is neglected. The governing equations are in terms of displacement u stress S and linear strain E .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.