# Mechanism Design - Enumeration Part 3

## Tham khảo tài liệu 'mechanism design - enumeration part 3', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Chapter 2 Basic Concepts of Graph Theory In this chapter we introduce some fundamental concepts of graph theory that are essential for structure analysis and structure synthesis of mechanisms. Readers are encouraged to refer to Gibsons 1 and Harary 2 for more detailed descriptions of the theory. Definitions A graph consists of a set of vertices points together with a set of edges or lines. The set of vertices is connected by the set of edges. Let the graph be denoted by the symbol G the vertex by set V and the edge by set E. We call a graph with v vertices and e edges a v e graph. Edges and vertices in a graph should be labeled or colored otherwise they are indistinguishable. Each edge of a graph connects two vertices called the end points. We specify an edge by its end points that is eij denotes the edge connecting vertices i and j. An edge is said to be incident with a vertex if the vertex is an end point of that edge. The two end points of an edge are said to be adjacent. Two edges are adjacent if they are incident to a common vertex. For the 11 10 graph shown in Figure e23 is incident at vertices 2 and 3. Edges e12 e23 and e25 are adjacent. Degree of a Vertex The degree of a vertex is defined as the number of edges incident with that vertex. A vertex of zero degree is called an isolated vertex. We call a vertex of degree two a binary vertex a vertex of degree three a ternary vertex and so on. For the graph shown in Figure the degree of vertex 2 is three the degree of vertex 10 is one and vertex 11 is an isolated vertex. 2001 by CRC Press LLC FIGURE Graph subgraph component and tree. Walks and Circuits A sequence of alternating vertices and edges beginning and ending with a vertex is call a walk. A walk is called a trail if all the edges are distinct and a path if all the vertices and therefore the edges are distinct. In a path no edge may be traversed more than once. The length of a path is defined as the number of edges between .

TÀI LIỆU LIÊN QUAN
21    370    0
5    1130    64
4    582    37
5    793    65
41    451    14
51    238    2
124    340    9
47    273    3
118    609    41
100    592    21
TÀI LIỆU XEM NHIỀU
13    40840    2412
3    24927    248
25    24446    4276
16    20048    2846
20    19486    1543
14    19267    2967
1    19257    616
37    16151    2958
3    15960    330
1    14557    132
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
7    292    2    25-05-2024
147    84    4    25-05-2024
127    82    5    25-05-2024
5    76    1    25-05-2024
94    89    5    25-05-2024
63    340    2    25-05-2024
61    171    2    25-05-2024
11    51    1    25-05-2024
39    114    3    25-05-2024
257    1    1    25-05-2024
115    82    4    25-05-2024
68    64    1    25-05-2024
8    1    1    25-05-2024
11    194    2    25-05-2024
9    56    1    25-05-2024
4    1    1    25-05-2024
7    81    1    25-05-2024
5    118    1    25-05-2024
321    2    1    25-05-2024
8    746    1    25-05-2024
TÀI LIỆU HOT
3    24927    248
13    40840    2412
3    2765    81
580    5085    363
584    3339    100
62    6662    1
171    5696    719
2    3125    78
51    4454    200
53    4727    188
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.