# Mechanism Design - Enumeration Part 6

## Tham khảo tài liệu 'mechanism design - enumeration part 6', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Chapter 5 Enumeration of Graphs of Kinematic Chains Introduction In Chapter 3 we have shown that the topological structures of kinematic chains can be represented by graphs. Several useful structural characteristics of graphs of kinematic chains were derived. In this chapter we show that graphs of kinematic chains can be enumerated systematically by using graph theory and combinatorial analysis. There are enormous graphs. Obviously not all of them are suitable for construction of kinematic chains. Only those graphs that satisfy the structural characteristics described in Chapter 4 along with some other special conditions if any are said to be feasible solutions. The following guidelines are designed to further reduce the complexity of enumeration 1. Since we are primarily interested in closed-loop kinematic chains all graphs should be connected with a minimal vertex degree of 2. 2. All graphs should have no articulation points or bridges. A mechanism that is made up of two kinematic chains connected by a common link but no common joint or by a common joint but no common link is called a fractionated mechanism. Fractionated mechanisms are useful for some applications. However the analysis and synthesis of such mechanisms can be accomplished easily by considering each nonfractionated submechanism. Therefore this type of mechanism is excluded from the study. 3. Unless otherwise stated nonplanar graphs will be excluded. Although this is somewhat arbitrary in view of the complexity of such mechanisms it is reasonable to exclude them. It has been shown that for the graph of a planar one-dof linkage to be nonplanar it must have at least 10 links. Perhaps Cayley Redfield and Pólya are among the first few pioneers in the development of graphical enumeration theory. Pólya s enumeration theorem provides a powerful tool for counting the number of graphs with a given number of vertices 2001 by CRC Press LLC and edges 7 . A tutorial paper on Polya s theorem can be found in .

TÀI LIỆU LIÊN QUAN
21    136    0
5    194    8
4    100    4
5    143    9
51    120    0
41    173    9
124    99    3
47    164    3
118    247    20
100    226    10
TÀI LIỆU XEM NHIỀU
13    18399    641
25    11624    2524
3    10724    93
20    10709    1095
37    10111    2579
14    9284    1919
8    8169    1667
23    7298    269
2    7147    136
17    7045    181
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
92    9    1    02-08-2021
12    11    1    02-08-2021
59    10    1    02-08-2021
91    13    1    02-08-2021
50    9    1    02-08-2021
95    8    1    02-08-2021
41    14    1    02-08-2021
51    8    1    02-08-2021
6    8    1    02-08-2021
55    9    1    02-08-2021
77    10    1    02-08-2021
131    10    1    02-08-2021
26    13    1    02-08-2021
228    28    5    02-08-2021
6    10    1    02-08-2021
15    7    1    02-08-2021
57    6    1    02-08-2021
25    11    1    02-08-2021
15    3    1    02-08-2021
61    6    1    02-08-2021
TÀI LIỆU HOT
3    10724    93
13    18399    641
3    872    71
580    2896    282
584    1433    57
62    3159    1
171    2820    505
2    1208    64
51    1514    91
53    2057    87