Smoothing không gian và không gian nội suy Chương này bao gồm hai nhiệm vụ chung chung hơn trong phân tích không gian dựa trên GIS: không gian làm mịn và nội suy không gian. Không gian làm mịn và nội suy không gian liên quan chặt chẽ và được cả hai hữu ích để hình dung mô hình không gian và làm nổi bật xu hướng không gian. Một số phương pháp (ví dụ, hạt nhân dự toán) có thể được sử dụng trong không gian làm mịn hoặc nội suy. Có loại làm mịn không gian và các phương. | 3 Spatial Smoothing and Spatial Interpolation This chapter covers two more generic tasks in GIS-based spatial analysis spatial smoothing and spatial interpolation. Spatial smoothing and spatial interpolation are closely related and are both useful to visualize spatial patterns and highlight spatial trends. Some methods . kernel estimation can be used in either spatial smoothing or interpolation. There are varieties of spatial smoothing and spatial interpolation methods. This chapter only covers those most commonly used. Conceptually similar to moving averages . smoothing over a longer time interval spatial smoothing computes the averages using a larger spatial window. Section discusses the concepts and methods for spatial smoothing followed by case study 3A using spatial smoothing methods to examine Tai place-names in southern China in Section . Spatial interpolation uses known values at some locations to estimate unknown values at other locations. Section covers pointbased spatial interpolation and Section uses case study 3B to illustrate some common point-based interpolation methods. Case study 3B uses the same data and further extends the work in case study 3A. Section discusses area-based spatial interpolation which estimates data for one set of generally larger areal units with data for a different set of generally smaller areal units. Area-based interpolation is useful for data aggregation and integration of data based on different areal units. Section presents case study 3C to illustrate two simple area-based interpolation methods. The chapter is concluded with a brief summary in Section . SPATIAL SMOOTHING Like moving averages that are calculated over a longer time interval . 5-day moving-average temperatures spatial smoothing computes the value at a location as the average of its nearby locations defined in a spatial window to reduce spatial variability. Spatial smoothing is a useful method for many applications. One