Ogata - Modern Control Engineering Part 5

Tham khảo tài liệu 'ogata - modern control engineering part 5', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | Table 5-1 Operational-Amplifier Circuits That May Be Used as Compensators 270 Chapter 5 Basic Control Actions and Response of Control Systems x 0 v í G .v -----Figure 5-50 A -v z .y Stable linear time-invariant system. G s p s __ 7Ơ Ơ 52 - 5 5 The Laplace-transformed output y s is then m G S x . x S 5_31 where A 5 is the Laplace transform of the input x t . It will be shown that after waiting until steady-state conditions are reached the fre-quency response can be calculated by replacing 5 in the transfer function by JJ. It will also be shown that the steady-state response can be given by G j w Me Af 0 where M is the amplitude ratio of the output and input sinusoids and Ị is the phase shift between the input sinusoid and the output sinusoid. In the frequency-response test the input frequency Ư is varied until the entire frequency range of interest is covered. The steady-state response of a stable linear time-invariant system to a sinusoidal input does not depend on the initial conditions. Thus we can assume the zero initial condition. If Y S has only distinct poles then the partial fraction expansion of Equa-tion 5-31 yields y s G s X s G s 1-7 I a a b . . 5 JOJ 5 joj 5 5ị 2 5 s2 V 5 5 32 ỏ -r where a and the bi where i 1 2 . are constants and a is the complex conjugate of a. The inverse Laplace transform of Equation 5-32 gives ----------y t ae ut -I- ãel ưl 4- b e Sỵl -I- b2eS2 bne Sĩit t 0 5-33 For a stable system -51 -52 . . -Sr have negative real parts. Therefore as t approaches infinity the terms e sir e r . and approach zero. Thus all the terms on the right-hand side of Equation 5-33 except the first two drop out at steady state. _If Y s involves multiple poles Sj of multiplicity m7 then y t will involve terms such as thie sir hj 0 1 2 . . m 1 . For a stable system the terms thje sir approach zero as t approaches infinity. Thus regardless of whether the system is of the distinct-pole type the steady-state response becomes yss t .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.