Electromagnetic Waves Part 5

Tham khảo tài liệu 'electromagnetic waves part 5', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | 130 Electromagnetic Waves Following the idea used for the analysis of diffraction by a strip we represent the scattered field using the fractional Green s function c x y J f 1 x Ga x -x y dx 31 0 where f1 x is the unknown function Ga is the fractional Green s function 2 . After substituting the representation 31 into fractional boundary conditions 30 we get the equation -i . . . . rnf . . 1 r 2a Ỉ 1- Í IT 1 I V 2 I . 2 I 3 r _ 1 I .a I i i ix tx lim Dky J J x H0 I kyj x x y I dx lim UkyEz x y x 0. 32 4 y - 4 V J y- The Fourier transform of f1 a x is defined as F1-a q f1- ỉ e- i dỉ f1 a x e-ikqxdx - 0 where f1-a ỉ for ỉ 0 and 0 for ỉ 0 . Then the scattered field will be expressed via the Fourier transform F1-a q as E x y ina 2 r 7. -i 4 J F 1- q eik xq y 1-q 1 -q2 a-1 2dq 33 Using the Fourier transform the equation 32 is reduced to the DIE with respect to F1 q F1-a q eikỉq 1 q2 -1 2 dq 4 e 2 1-a sin 0e-ikỉcos0 ỉ 0 - 34 J F 1- q eikỉqdq 0 ỉ 0. .- The kernels in integrals 34 are similar to the ones in DIE 17 obtained for a strip if the constant dL is equal to 1 L 0 in the case of a half-plane . For the limit cases of the fractional order a 0 and a 1 these equations are reduced to well known integral equations used for the PEC and PMC half-planes Veliev 1999 respectively. In this paper the method to solve DIE 5 is proposed for arbitrary values of a e 0 1 . DIE allows an analytical solution in the special case of a in the same manner as for a strip with fractional boundary conditions. Indeed for a we obtain the solution for any value of k as F0 5 q 2 sin1 2 0 e 4 ks q cos ớ Fractional Operators Approach and Fractional Boundary Conditions 131 f05 x 2sin1 2 ue - e s . The scattered field can be found in the following form Es x y _Le i a 2ei 4 sina 1 2 0eik -cosỡx lyn a for y 0 y 0 . In the general case of 0 a 1 the equations 34 can be reduced to SLAE. To do this we represent the unknown function f1 a a as a series in terms of .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.