Báo cáo nghiên cứu khoa học " Một cách giải hệ phương trình vi phân thường phi tuyến tính trong mô hình phần tử hữu hạn sóng động học một chiều "

Bài báo đề cập đến việc đánh giá hiệu quả của các sơ đồ giải hệ phương trình vi phân thường phi tuyến tính, xuất hiện khi áp dụng phương pháp phần tử hữu hạn đối với phương trình sóng động học một chiều. Sơ đồ hiện, sơ đồ nửa ẩn và ẩn, sơ đồ Runge-Kutta bậc 3 đã được xem xét, đánh giá. Kết quả nghiên cứu cho thấy sơ đồ Runge- Kutta bậc 3 có độ ổn định và độ chính xác cao đối với việc giải hệ phương trình vi phân thường phi tuyến tính trong. | Một cách giải hệ phương trình vi phân thường phi tuyến tính trong mô hình phần tử hữu hạn sóng động học một chiều Lương Tuấn Anh Viện Khoa học Khí tượng Thủy văn và Môi trường Nguyễn Thanh Sơn Trường Đại học Khoa học Tự nhiên Tóm tắt Bài báo đề cập đến việc đánh giá hiệu quả của các sơ đồ giải hệ phương trình vi phân thường phi tuyến tính xuất hiện khi áp dụng phương pháp phần tử hữu hạn đối với phương trình sóng động học một chiều. Sơ đồ hiện sơ đồ nửa ẩn và ẩn sơ đồ Runge-Kutta bậc 3 đã được xem xét đánh giá. Kết quả nghiên cứu cho thấy sơ đồ Runge- Kutta bậc 3 có độ ổn định và độ chính xác cao đối với việc giải hệ phương trình vi phân thường phi tuyến tính trong mô hình phần tử hữu hạn sóng động học một chiều. Mở đầu Mô hình phần tử hữu hạn xuất phát từ việc xấp xỉ các biến liên tục theo không gian và thời gian bằng tổ hợp các hàm không gian và thời gian riêng rẽ. Việc xử lý gần đúng như vậy sẽ dẫn đến sai số và phương pháp số dư có trọng số là phương pháp buộc tổng sai số bằng không đối với một hàm trọng số nào đó. Phương pháp Galerkin là trường hợp riêng của phương pháp số dư có trọng số khi hàm trọng số chính là hàm nội suy không gian xác định trong một giới hạn nhất định được gọi là phần tử. Nói chung phương pháp số dư có trọng số là một phép biến đổi hệ phương trình vi phân đạo hàm riêng về dạng hệ các phương trình vi phân thường. Do đó đối với các bài toán áp dụng phương pháp phần tử hữu hạn ngoài việc nghiên cứu đánh giá độ ổn định độ chính xác của các sơ đồ tính thông qua các hàm nội suy không gian 3 thì việc nghiên cứu các phương pháp có hiệu quả để giải các hệ phương trình vi phân thường khi áp dụng phương pháp Galerkin đối với hệ phương trình sóng động học 1 chiều áp dụng cho bài toán dòng chảy sườn dốc và trong sông là rất cần thiết để thu được các thuật toán có hiệu quả cao. Về việc áp dụng phương pháp phần tử hữu hạn đối với phương trình sóng động học 1 chiều đã được đề cập đến trong các công trình nghiên cứu ở trong và ngoài nước 3 4 5 trong bài .

Không thể tạo bản xem trước, hãy bấm tải xuống
TÀI LIỆU LIÊN QUAN
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.