Tuyển tập báo cáo các nghiên cứu khoa học quốc tế ngành hóa học dành cho các bạn yêu hóa học tham khảo đề tài: The effect of consequent exposure of stress and dermal application of low doses of chlorpyrifos on the expression of glial fibrillary acidic protein in the hippocampus of adult mice | Lim et al. Journal of Occupational Medicine and Toxicology 2011 6 4 http content 6 1 4 JOURNAL OF OCCUPATIONAL MEDICINE AND TOXICOLOGY RESEARCH Open Access The effect of consequent exposure of stress and dermal application of low doses of chlorpyrifos on the expression of glial fibrillary acidic protein in the hippocampus of adult mice Kian Loong LimH Annie Tay2t Vishna Devi Nadarajah3t Nilesh Kumar Mitra 3 Abstract Background Chlorpyrifos CPF a commonly used pesticide worldwide has been reported to produce neurobehavioural changes. Dermal exposure to CPF is common in industries and agriculture. This study estimates changes in glial fibrillary acidic protein GFAP expression in hippocampal regions and correlates with histomorphometry of neurons and serum cholinesterase levels following dermal exposure to low doses of CPF with or without swim stress. Methods Male albino mice were separated into control stress control and four treatment groups n 6 . CPF was applied dermally over the tails under occlusive bandage 6 hours day at doses of 1 10th CPF and 1 5th dermal LD50 CPF for seven days. Consequent treatment of swim stress followed by CPF was also applied. Serum cholinesterase levels were estimated using spectroflurometric methods. Paraffin sections of the left hippocampal regions were stained with thionin followed by the counting of neuronal density. Right hippocampal sections were treated with Dako Envision GFAP antibodies. Results CPF application in 1 10th LD50 did not produce significant changes in serum cholinesterase levels and neuronal density but increased GFAP expression significantly p . Swim stress with CPF group did not show increase in astrocytic density compared to CPF alone but decreased neuronal density. Conclusions Findings suggest GFAP expression is upregulated with dermal exposure to low dose of CPF. Stress combined with sub-toxic dermal CPF exposure can produce neurotoxicity. Background Almost 85 of the .