Discrete Time Systems Part 4

Tham khảo tài liệu 'discrete time systems part 4', kỹ thuật - công nghệ, cơ khí - chế tạo máy phục vụ nhu cầu học tập, nghiên cứu và làm việc hiệu quả | On the Error Covariance Distribution for Kalman Filters with Packet Dropouts 79 Fig. 1. Upper and lower bounds for the Error Covariance. Also since 01 P p_ we have that 7 E STm 1 7 71X STm 67 7 E Sm . 68 Hence for any binary variable Y we have that 7 . sm Y 7 sm 69 7 Z STm Y 7 P sm . 70 Now notice that the bounds 29 and 57 only differ in the position of the step functions H . Hence the result follows from 69 and 70 . Example Consider the system below which is taken from Sinopoli et al. 2004 A 0 1 11 1 C 71 20 0 0 20 R with A . In Figure 1 we show the upper bound FT x and the lower bound T x for T 3 T 5 and T 8. We also show an estimate of the true CDF F x obtained from a Monte Carlo simulation using 10 000 runs. Notice that as T increases the bounds become tighter and for T 8 it is hard to distinguish between the lower and the upper bounds. 80 Discrete Time Systems 4. Bounds for the expected error covariance In this section we derive upper and lower bounds for the trace G of the asymptotic EEC . G lim Tr E Pt . t -M Since Pt is positive-semidefinite we have that Tr E Pt I 1 - Ft x dx. Hence 2 G 1 lim Ft x dx 0 t -tn K 1 F x dx 0 72 73 75 76 Lower bounds for the EEC In view of 76 a lower bound for G can be obtained from an upper bound of F x . One such bound is F x derived in Section . A limitation of F x is that F x 1 for all x p Pj m hence it is too conservative for large values of x. To go around this we introduce an alternative upper bound for F x denoted by F x . Our strategy for doing so is to group the sequences sm m 0 1 2m 1 according to the number of consecutive lost measurements at its end. Then from each group we only consider the worst sequence . the one producing the smallest EEC trace. Notice that the sequences sm with m 2T z 0 z T are those having the last z elements equal to zero. Then from 25 and 26 it follows that argmin Tr X sm 2T z 1 77 . from all sequences with z zeroes at its end the one that produces the .

Không thể tạo bản xem trước, hãy bấm tải xuống
TỪ KHÓA LIÊN QUAN
TÀI LIỆU MỚI ĐĂNG
Đã phát hiện trình chặn quảng cáo AdBlock
Trang web này phụ thuộc vào doanh thu từ số lần hiển thị quảng cáo để tồn tại. Vui lòng tắt trình chặn quảng cáo của bạn hoặc tạm dừng tính năng chặn quảng cáo cho trang web này.